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Abstract

This thesis develops a methodology to incrementally convert a legacy object-

oriented C++ application into Ada95. Using the experience of converting a graphic

application, called Remote Debriefing Tool (RDT), in the Graphics Lab of the Air Force

Institute of Technology (AFIT), this effort defined a process to convert a C++ application

into Ada95.

The methodology consists of five phases: (1) reorganizing the software application,

(2) breaking mutual dependencies, (3) creating package specifications to interface the

existing C++ classes, (4) converting C++ code into Ada programs, and (5) embellishing.

This methodology used the GNAT's C++ low-level interface capabilities to support the

incremental conversion. The goal of this methodology is not only to correctly convert C++

code into Ada95, but also to take advantage of Ada's features which support good software

engineering principles.
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An Incremental Language Conversion Method

to Convert C++ to Ada95

1 Introduction

1.1 Overview

This thesis work developed a methodology to incrementally convert a legacy

object-oriented C++ application to Ada95. From the experience of converting a graphic

application in the Graphics Lab of the Air Force Institute of Technology (AFIT), this

research defined a process to translate a C++ application to Ada95. Also, it provided

another way to develop new graphics applications in the Graphics Lab of AFIT. Some of

the issues investigated during this reaearch included: language conversion process, mixed

programming language development, and object-oriented programming in C++ and Ada95.

1.2 Thesis Statement

Even though Ada was the official programming language for the Department of

Defense, Major Michael Thurman Gardner chose C++ to develop the Remote Debriefing

Tool (RDT) in 1993 [Gardner93]. RDT is a system that utilizes the Distributed Interactive

Simulation (DIS) communication protocol to monitor and play back a Red Flag mission.

Red Flag was conceived in 1975 to provide realistic simulated air combat missions.

Aircrews at Red Flag plan and then execute simulated combat missions. After a simulated

mission, all participants have the opportunity to critically review every aspect of their flight
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performance and to learn how to improve their flying skills and judgment for future

missions in real combat. RDT is a tool that helps all participants reexamine their Red Flag

mission performance at remote sites [Gardner93].

One main reason that Major Gardner chose C++ instead of Ada to develop RDT

was that the C++ programming language supports object-oriented features. The early Ada

language, called Ada83, did not support object-oriented features even though it had many

other advantages over C++. Object-oriented features make software easier to reuse.

Additionally, the software environment for C++ graphics applications development better

supported programmers than did the Ada environment. Therefore, Major Gardner chose

C++ as the programming language for RDT.

Ada is a programming language for the complex world. It contains common

features of other programming languages and provides additional ability to support

complex and large software projects [HBAP].

e Portability: An Ada-developed software system can easily be ported to other

operating systems and platforms because Ada is an international standardized software

language by MIL-STD- 1815A, ANSI, and ISO [HBAP]. Actually, it was the first and is the

only existing international standardized object-oriented programming language.

* Modularity: Ada organizes code into self-contained modules such that each

software module can be planned, written, compiled, and tested separately. Ada also

provides consistency checking across each of these self-contained modules. This allows

the software system to be developed by teams and then integrated into a well-structured

2



system. Therefore, by using Ada, it is easier to develop a software system meeting good

software engineering principles.

e Reusability: Ada provides a "package" concept that has advantages over other

programming languages. It minimizes the ripple effect when developers retrieve, use

and/or change software components, so that it provides an easy way to reuse software

components [HBAP]. Additionally, its generic program units allows programmers to

perform the same logical function on more than one type of data [HBAP].

o Reliability: Ada's strong-typing, exception handling and tasking features help

developers to build reliable software systems [HBAP]. Ada's strong typing enables

developers to detect potential bugs in the early development phases instead of later in the

development cycle. Some experiments have suggested that strongly typed languages lead

to increased program clarity and reliability [Gannon77]. Ada's exception handling

mechanism supports developers in building fault-tolerant software. Also, its tasking

features help developers to solve real-time problems instead of using lower-level and

error-prone operating system calls.

* Maintainability: Ada's modularity and readability make it easier to maintain. Its

superior modularity allows programmers to modify a package without affecting other

program modules that should not be modified. Ada's readability makes it easier for one

programmer to maintain a program written by another programmer [HBAP].

Ada95 revised the early Ada83 such that Ada now has new features to meet

current software development requirements. The important new features of Ada95 include

three aspects [APR93]:
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* Object Oriented Programming: Ada95 has included Object-Oriented

Programming (OOP) facilities to allow programmers to do object-oriented programming

[APR93]. OOP provides information hiding capability and promotes the reuse of code

through the inheritance mechanism [Pohl93].

* Hierarchical Libraries: The hierarchical library form is valuable for the control

and decomposition of large software systems [APR93].

* Protected Objects: The enhanced tasking features of Ada95 supports an

efficient mechanism for multitask synchronized access to shared data such that the real-

time requirement can be easily implemented in Ada95 [APR93].

Since the emergence of Ada95 has eliminated the defects of Ada83 and Ada95 has

so many advantages over other languages, it is time to convert old C++ applications to

Ada95.

1.3 Scope

This thesis work focused on programming language conversion instead of software

reengineering, though some information was obtained by using reverse engineering

techniques. This thesis presents the general process of converting one language to another

language. Specifically, converting C++ to Ada95 is addressed in this thesis. No new

functions or requirements for RDT are introduced in this thesis work. Incremental and

partial system conversion is implemented in this thesis in order to obtain immediate results.

Also, instead of converting all the software modules implemented in C, an interface was

created to interface some existing C-code modules. No hardware issues are considered in

4



this thesis. The converted Ada95 application should work as well as the original C++

application on the original hardware and software environment.

In order to succeed in the conversion, a number of issues related to this thesis work

had to be investigated:

1. Mixed language programming, especially for C/C++ and Ada95.

2. The C++ and Ada95 implementation for object-oriented design.

3. The corresponding data types between C/C++ and Ada95.

4. General language conversion methods.

5. Incremental development methods.

1.4 Assumption

This section enumerates the assumptions that were made in developing the thesis

statement and scope of this work.

1. The original software application was built based on an object-oriented design.

2. The original object-oriented design was well-done and no software

architecture restructuring is needed.

3. The original application was successfully developed and met the original

system requirements.

4. The foundations of RDT including Object Manager, ObjectSim, Performer

library and Graphics library were well developed.
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1.5 Thesis Goals

There were three main goals in this thesis work:

1. A converted Ada95 RDT. This thesis converted the original C++ RDT application

into an Ada95 RDT application without any functional change.

2. A methodology to incrementally convert a C++ application into an Ada95

application. By converting the RDT from C++ into Ada95, this thesis defined a

methodology to incrementally convert a C++ application into an Ada95 application. The

conversion method and process is addressed in this thesis.

3. A new software development environment for Ada programmers for the Graphics

Lab at AFIT. The original software development environment was for C++ programmers.

The foundations of software development in the Graphics Lab at AFIT were Performer,

Graphics Library (GL), ObjectManager, and ObjectSim. These foundations were created

for C++ programmers. After this thesis effort, a new software development environment is

available to the Ada programmers.

1.6 Research Approach

Since one goal of this research was to convert a C++ software application, RDT,

into Ada95, the first step was to examine and understand the software architecture of RDT.

Software architecture is the description of a software system with its components and the

interactions among these components [Garlan93]. Software architecture has at least five

positive impacts in software system development: understanding, reuse, evolution,

analysis, and management [Garlan95]. By understanding the software architecture of the
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RDT, a big picture view can be attained. That view provides insight into the conversion

sequence of the software components.

The second step was to compare the differences between C++ and Ada95. In this

step, the parallel data types between C++ and Ada95 and object-oriented implementation in

both languages were key issues. These are the foundations of converting one language into

another language in an object-oriented architecture.

In order to reduce the risk of converting RDT from C++ into Ada95, the

incremental conversion process was chosen. It is easier to identify problems when they

occur as the incremental conversion proceeds. By converting one module at a time,

problems should be limited to the converted modules, so programmers can focus on the

limited areas to identify and solve the problems. Otherwise, it is very difficult to identify

problems when they occur. Therefore, the incremental conversion method was chosen for

this thesis.

Because this research was going to develop an incremental conversion method,

mixed language programming was an inevitable issue. Therefore, the interface between

C++ and Ada95 and its capability were investigated in the third step. The capabilities and

limitations of multilingual programming play an important role in an incremental

conversion method. Without this capability, incremental conversion would not be feasible.

The tools to support the conversion process are also very important in this step.

The fourth step was to develop some guidelines that determine the conversion

sequence. Good conversion principles can ease and smooth the whole conversion process
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and shorten the conversion time. In this step, multilingual software engineering issues

should be considered.

The final step was converting one software component at a time, based on the

knowledge developed in the previous steps.

1.7 Support

This conversion work was done on Silicon Graphics, Inc. (SGI) machines running

the IRIX 5.3 operating system. SGI also provides Graphics Library (GL) and Performer to

help users develop their graphics applications on the SGI machines. The new prototype

tool, called Adabindgen, also supports developers in interfacing C/C++ modules in Ada

programs. Adabindgen will be introduced in a later section. The Static Analyzer helps

software engineers understand the structure of legacy software systems and the

dependencies among the software modules. The GNAT and SGI's CC compilers were

used in this thesis work to compile the Ada95 and C++ software modules, respectively.

1.8 Document Overview

This research investigated developing an incremental language conversion method

from C++ to Ada95 and exploring the strength and difficulties of mixed language

programming. The goals, assumptions, research approach, and support for this thesis have

been outlined throughout this chapter. The remaining chapters describe the research

completely.

Chapter 2 details background topics pertinent to this effort. It covers the software

layer structure of RDT and the object-oriented model of RDT. The RDT software layer
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structure shows how RDT was built and the object-oriented model of RDT shows the key

components of RDT and how they associate to each other. These provide the high-level

knowledge of RDT.

Chapter 3 summarizes the research related to this thesis work. It begins by

presenting some issues of concern in mixed language programming. Then, language

conversion methods are reviewed. Finally, two important tools, Adabindgen and GNAT,

used in this thesis work are introduced and investigated.

Chapter 4 presents the methodology developed from this thesis work. This

methodology suggest five phases to incrementally convert the C++ application into Ada95

by using GNAT's C++ low-level interface capability. These phases are (1) reorganizing

the software application, (2) breaking mutual dependencies, (3) creating interface package

specifications, (4) converting C++ code into Ada programs, and (5) embellishing.

Chapter 5 presents the problems encountered while trying to achieve the results in

this thesis work. Some mixed language lessons have been learned from this thesis work.

Mixed language programming has its strengths over single language programming.

However, many issues still cause programmers to stumble. These mixed programming

difficulties are also examined in Chapter 5.

At a conclusion to this effort, Chapter 6 suggests some areas of future study and

work related to this thesis work.
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2 Background

The functions and requirements of RDT can be found in [Gardner93]. This chapter

introduces the software architecture of RDT.

2.1 Software Layer Structure

In Figure 1, the software layer structure of the RDT application is shown. RDT

heavily relies on ObjectSim and Object Manager. Both of them were written in C++. Only

C++ programmers can build their applications on ObjectSim and Object Manager. IRIS

Performer and GL were supplied by SGI for C++ developers. SGI also supports the Ada

binding of Performer and GL such that Ada programmers can use Performer and GL. In

order to convert the RDT application from C++ into Ada95, it is necessary to interface

ObjectSim and Object Manager.

RDT Application

ObjectSim and
Object Manager

(C++)

IRIS Performer (C++/Ada)

IRIS G L (C++/Ada)

IRIX Operating System

SGI Hardware

Figure 1. The software layer structure of RDT application.

The IRIS Graphics Library (GL) is a library of low-level graphics subroutines that

can be called by programmers to draw and animate 2-D and 3-D color graphics scenes

[SG192]. The GL provides the following capabilities:

10



" drawing points, lines, and polygons.
" handling of user input.
" animating effects.
" hidden surface removal.
" lighting effects.
" pixel control and setting.
" coordinate transformation.
" frame buffer management.
" antialiasing.
" atmospheric effects.

In contrast to GL, the IRIS Performer Library is an extensible software toolkit that

can help developers create real-time 3-D graphics and visual simulation applications

[SG194]. Performer provides the following features:

" building a visual simulation application.
" setting up the display environment.
" building a scene graph.
" database traversal and importing.
* frame and load control.
" creating visual effects.

ObjectSim [Snyder93] provides a set of high-level software components that the

programmers in the Graphics Lab of AFIT can reuse to easily build a visual simulation

application. The next section will show that the software components of the ObjectSim

were successfully reused in the RDT application. Developers can simply develop new

software components based on their own unique requirements. Then, developers can

construct a whole simulation application by combining the developed software components

with the existing ObjectSim reusable software components.

Object Manager is a library which handles a network interface. Object Manager has

three main functions: (1) position/time monitoring, (2) dead reckoning, and (3) sending and

11



receiving the Protocol Data Units (PDU) over the network through interfacing to a low-

level driver, called the network daemon [Snyder93]. With the help of Object Manager, the

distributed visual simulation application can focus on the high level function instead of the

low-level network interface issues.

2.2 The Object-Oriented Model of RDT

Figure 2 shows the object-oriented model of RDT using Rumbaugh's

[Rumbau9l] notation. The classes enclosed by the bold frame belong to ObjectSim and

Object Manager. From this figure, readers can form a big picture of the RDT software

architecture and understand the relationship among the RDT classes and ObjectSim/Object

Manager classes. Most of the RDT classes are derived from ObjectSim. Other RDT

classes are built according to unique RDT requirements. That is the success of ObjectSim:

build a reusable foundation such that graphic applications can be built based on this

reusable infrastructure and only application-unique components have to be built from

scratch.

The software modules of RDT and their sizes are listed in Appendix A.

12
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3 Summary of Current Knowledge

3.1 Multilingual Software Engineering

David Hughes roughly classified multilingual software engineering into two

categories: reuse of existing software and multilingual implementation by design

[Hughes91]. For the reuse of existing software, software engineers need to completely

understand the mechanism of the existing code and the language interface mechanism

[Hughes91 ]. That makes the reuse more difficult in multilingual software engineering than

single language implementations. For software systems which are multilingual by design,

software engineers need to understand the strengths and weaknesses of each programming

language, as well as to thoroughly control the effect produced by the languages working

together [Hughes91].

David Hughes also pointed out some important areas that needed to be conquered in

multilingual software engineering using Ada and C. Most of these issues are general issues

not specific to only Ada and C. This section summarizes those issues that are pointed out

by [Hughes91] and lists them in decreasing order of importance in the following

subsections.

3.1.1 Call Stack Ordering

Every compiler has its own way of handling parameter retrieval from the call stack.

Some compilers may use a front-to-back method to process the association of actual

arguments popped from the stack with registers or memory locations corresponding to the

formal parameters, but some compilers may use the reverse way to do it. When defining an
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Ada subprogram interface specification to another language, it may be necessary to reverse

the order of the formal arguments. It is not safe to assume that the call interface will be

consistent [Hughes91].

Therefore, Hughes reminded multilingual software engineers: "Disassembled

listings must be examined early in the design phase in order to establish an accurate

paradigm for the language call interface" [Hughes91]. If this problem occurs, a method

must be developed to conquer it. In [Kapur95], a method, called "patch code" was

introduced to solve this problem. "The patch code adjusts the stack so that the parameters

from the calling stack matches the parameters of the function that is being called"

[Kapur95].

3.1.2 Compiler Dependencies

Compilers use different ways to implement the return of a single discrete value

from a function. C compilers may return the discrete function values via registers instead

of the stack. Generally, this won't cause any problem. However, that is not guaranteed.

For embedded software systems, it is common to use lower level language programming,

such as machine code or assemble language. In this situation, programmers need to

manipulate a register directly in order to emulate a function return from C [Hughes9 1].

3.1.3 Data Representation and Interoperability

"The issue of data type should be addressed at the call interface level" [Hughes9 I].

Like the idea of Remote Procedure Call, a definition of a single, clearly and sufficiently

common abstraction is needed for multilingual software engineering to support the
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information exchange from one software module to another different language software

module. The data representations of data across languages has to be consistent.

Interoperability refers to the consistency of data representation across languages and

software environments. One approach to achieve interoprability is using so-called

language binders. This approach implicitly uses the notion of sharing data structures by

abstracting and hiding the essential details of implementation. Therefore, the information

exchange relies on the language binder to assure that representation detail is interpreted

consistently. In this way, any data structure may coexist in different language systems and

can be directly manipulated from any language system [Hughes9 1].

Complex data structures should be encapsulated in only a single language. If it is

necessary to exchange the information of complex data structures among the different

language systems, the information should be treated as in black-box fashion and confined

to the safe types. For example, the black-box datum usually is a pointer to the complex data

structure that wants to cross the language boundary [Hughes91 ]. So complex data structure

should be encapsulated in one language, but accessed via pointers from the other language.

Also, the data structure must be manipulated in a way that is consistent with the way it was

defined.

3.1.4 Parallel Data Types

"Safe types are those which map to an underlying representation supported directly

by the machine and which have equivalent allowable operation in each of the languages

involved" [Hughes9 1]. For the call interface between C and Ada, there are three safe types:
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integer type of some specific size, single-precision floating type, and an address type. Here

is an example of safe types for the MC680xO architecture.

Table 1. The Safe Types of MC68OXO Architecture [Hughes9l]

Language Data Type Size in Bits
Ada subtype INT32_TYPE is INTEGER; 32

for INT32_TYPE'size use 32;

C int 32
Ada FLOAT 32

C float 32
Ada SYSTEM.ADDRESS 32

C (type *) 32

From a software engineering standpoint, only safe types should cross language

boundaries. The other data types are not safe to cross the language boundary. Therefore,

software programmers in the multilingual software environment must be careful in the

following cases:

- It is not safe to directly map a structure or union in C/C++ to the records in Ada,

since memory alignment and filling is a function of the compiler chosen. Actually, to

interface a C union type in Ada is tricky [Gart95]. Gart presented a method to solve this

problem in [Gart95].

- The treatment of enumeration types is not assumed consistent between C and Ada.

Many C compilers use discrete numeric values which are zero-offset to implement

enumeration types. To assure the enumeration types of two languages are compatible, Ada

programmers can use representation clauses to order the compiler to use specific internal
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representations for enumeration types. For example, C++ programmers can specify the

values of the enumeration constants to define seasons in this way:

enum seasons { Spring=2, Summer= 5, Fall = 8, Winter= ll};

In Ada, programmers need to use low-level representation clauses to assure the seasons

has the same memory representation:

type seasons is (Spring, Summer, Fall, Winter);

for seasons use (Spring =>2, Summer =>5, Fall =>8,
Winter =>11);

for seasons' size use 32;

Software engineers must be careful to handle the situation when a program uses the

calculation result of enumeration constants to do something important. Therefore, it is

better not to cross the language boundary for enumeration types.

- The fixed-point type in Ada has no analog in C [Hughes91], nor in C++.

Programmers may assume an underlying type FLOAT, but the issue of safe number and

model number in Ada is difficult to handle and becomes dangerous if precision of more

than a few significant decimal places is concerned. A similar problem occurs when double

precision values are required. Not all Ada compilers support double precision floating

point values the way most C compilers support it. Therefore, Hughes suggests: "The

calculation of extremely precise values should be confined to the stronger of the two

languages, with values of only limited precision crossing the language boundary"

[Hughes91].
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* In Ada, bit fields are handled in low-level programming by using representation

clauses. Moreover, bit manipulators are also manipulated via Ada's low-level features;

unlike C/C++ which provides "bitwise operators" to support programmers for bit

manipulation. From the software engineering view point, it is best not to cross language

boundaries for bit field types and bit manipulation [Hughes9 1].

- Strings in Ada and C are not compatible. "In C, any null-terminated sequence of

consecutive objects of a single type is considered a string. ... In Ada, strings are either

bounded or unbounded" [Hughes91]. They are not compatible in C and Ada. Hughes also

proposed a solution for passing an Ada string to C: "The best solution is to ensure that Ada

strings are null-terminated by including an ASCII.NUL as the last character of a bounded

string and passing a reference to the string using the qualifier "address" [Hughes91].

However, the reverse, that of passing a string defined in C to Ada is more problematic.

3.1.5 Constraint Checking

When programmers use the INTERFACE pragma, the strict integrity of Ada's

strong typing has been infringed. Programmers should not expect that the call interface

defined via pragma INTERFACE to C can apply the same constraints which have meaning

only within the closed world of Ada. That means the constraint exception may not be

generated in C code [Hughes9 1]. Therefore, the Ada data types exported across the C/C++

interface are no longer strongly typed because the Ada runtime system may not be able to

detect constraint errors of the cross-boundary data types. "The best rule is not to rely on

Ada compiler-generated constraint checking when interfacing to C" [Hughes91]. Hence,
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when an Ada program interfaces a C subprogram, software developers must understand

they are losing the strong typing feature of Ada.

Although the INTERFACE pragma has been effectively replaced by three pragmas

Import, Export, and Convention in Ada95, some Ada95 compilers may still support

it for upward compatibility [Ada95a]. Software engineers still need to pay attention to this

issue in the multilingual software environment.

3.1.6 Pointers and Access Types

"C pointers and Ada access types are not equivalent.... C pointers must be mapped

to objects of type SYSTEM. ADDRESS in Ada" [Hughes9l]. Moreover, the use of pointer

arithmetic is frequent in C/C++ but, in Ada, it is almost impossible without resorting to

machine code insertions or unchecked programming [Hughes91]. This implies that it is

better to minimize and collect the necessary pointer manipulation into a few software

modules, and then place these software modules on the C/C++ side.

3.1.7 Program Wrappers

"Program wrapper" refers to which language will be used to write the main

program. There are two choice in this issue: C/C++ or Ada. The first choice cannot use

Ada's more valuable capabilities: exception handling, elaboration and instantiation

[KSC93]. From the software engineering standpoint, it is simpler to use Ada as the main

program [Hughes9l, KSC93]. Section 3.2.4 will explain the advantages of the second

choice.
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3.1.8 Input/Output

In C/C++ and Ada, I/O is not part of the language definition. So, these three

languages rely on standard units which are hardware dependent. "Very little exists in

common between languages relative to input and output" [Hughes91 ]. C language assumes

there are three standard stream files: stdin, stdout, and stder. The C++ stream I/O ties these

three files to cin, cout, and cerr, respectively [Poh193]. Similarly, Ada has standard input

file, standard output file, and standard error file. If the operating system does not support

the standard error file, the standard error file may be associated with the same file as the

standard output file [Cohen96]. However, there may not be a one-to-one correspondance

between these standard I/O files.

"C normalizes all input and output as file 1/0, relying on either a file descriptor or

on a FILE structure" [Hughes91 ]. Ada performs file I/O by interfacing with objects of type

FILETYPE which is a limited private type. The mapping from file descriptor onto

FILETYPE is tricky. Hughes proposed one trick to circumvent this problem: "One such

trick is the evaluation of the limited private objects in a procedure call argument list"

[Hughes9l].

Mapping of C FILE structures is not a feasible solution because it is not a safe type.

Moreover, Ada is a real-time language, but C/C++ is not. In many cases, programmers

need to check if the files exist or not and then do some operations on these files. In Ada, if

there was a FileExist function to test whether a file exists or not, this function would only

indicate the status of the file when that function is called. In a real-time system, the file may

21



have gone away after the function was executed. Therefore, in a real-time system, the

solution to this problem is to use exception handlers [Uhde95b].

3.1.9 Special UNIX-Related Issues

Since C/C++ does not directly support multitasking capability, programmers on

UNIX system may use some special UNIX system calls. When a software application is

mixed with C/C++ and Ada, multilingual software developers need to take care to ensure

that UNIX system calls are compatible with Ada's tasking capability.

Context switching in UNIX is explicit by using setjump/longjump. However, Ada

context switching is implicit in the task model. These two models may conflict with each

other such that task thrashing or starvation occurs. "If the degree of explicit control is high,

it is advisable to transform the UNIX model into the Ada tasking model" [Hughes91].

Under UNIX, software systems usually use shared memory as an interprocess

communication mechanism. Ada83 did not provide the shared memory mechanism for

interprocess communication. Ada95 provides protected types where the idea is similar to

the shared memory. However, it is not guaranteed that the UNIX shared memory

mechanism is compatible with Ada's protected types. It is not too difficult to access the

shared memory for Ada code. "However, this is not good software engineering for two

reasons: one, it bypasses the protection mechanism implemented in true shared memory

systems, and two, it reduces to the data structure encapsulation issue discussed in the

section Data Representation and Interoperability" [Hughes91].
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3.1.10 Linker Issues

For multilingual software development, the object format generated by one

language compiler may not be completely compatible with another language's linker. In

this case, multilingual developers may need to convert the record formats and the definition

of symbols and string images prior to linking. It may not be difficult but it is an error-prone

process [Hughes91].

3.1.11 Tasking

Ada tasks may coexist with C code. Multilingual programmers may be able to

make Ada's entry calls visible via pragma EXPORT such that C code can call Ada tasks. In

the reverse case, Ada task can suitably define a call implemented in C and make it callable

within Ada tasks via pragma INTERFACE [Hughes9l] or the new pragma Import.

3.1.12 Pragma Interface, Pragma External Specification.

The use of some pragmas, such as INTERFACE, IMPORT, and EXPORT, may vary

from vendor to vendor. Multilingual developers need to carefully study the reference menu

provided by the compiler vendor [Hughes9l].

3.2 Language Conversion Methods

This section presents some conversion methods from a non-Ada language to Ada.

In [KSC93], it presented some approaches to convert non-Ada software systems to Ada: (1)

complete redesign and rewrite, (2) incremental functionally equivalent replacement, (3)

incremental redesign and rewrite, (4) incremental multilingual rewrite, and (5) automatic

translation.
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3.2.1 Complete Redesign and Rewrite

To exploit all advantages of Ada, the most thorough method of converting a system

to Ada is to do a complete redesign and rewriting. This approach involves reanalyzing,

redesigning, implementing and testing of the system and tries to make best use of Ada's

software engineering capabilities [KSC93].

If the original software system was badly designed or implemented beyond the

original good design, this approach may be the best approach since it may be too difficult to

maintain the original code. Simply translating the original code into Ada might result in

code no better than the original. Therefore, complete redesign and rewriting of the original

software system should provide a system with consequent improvements in maintainability

[KSC93].

3.2.2 Incremental Functionally Equivalent Replacement

Incremental functionally equivalent replacement conversion methods can be used

when the original design is still valid and the source code was well developed in software

engineering principles [KSC93]. This approach replaces a software module with an Ada

subprogram (procedure or function but not package) such that the Ada subprogram can

function as well as the replaced software module.

This approach has its advantages. One is that it can be performed while the system

is still being used [KSC93]. Another advantage is that it is easier to locate problems caused

by the conversion when they occur. When the new converted software system does not

function as well as before, software engineers can be relatively certain that the problems are

in the new converted Ada subprogram.
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However, this approach also has its disadvantages. The biggest disadvantage is that

the converted Ada subprogram needs to take into account the interface to the other

unconverted calling software modules. Since two different language software modules

exist, all problems presented in multilingual software engineering in Section 3.1 must be

considered.

Another disadvantage is that this approach makes little use of Ada software

engineering capabilities. This approach converts only a small software module into an Ada

subprogram at a time so no structuring mechanism above the subprogram level is used.

Consequently, this approach loses the advantages of Ada's package capabilities. Ada's

package capabilities helps software engineers implement several software engineering

principles: modularity, data abstraction, and information hiding capabilities [SPC95].

Another issue dealing with the incremental conversion method is the choice of the

approach to convert the software system: top-down or bottom-up. Neither way can dodge

the interface problems. To decide which direction should be taken in the conversion

process, software engineers need to identify the differences and limitations between

interfacing the target language from source language and interfacing the source language

from target language. Then software engineers should predict the ripple-effects of both

approaches in the language conversion process. Finally, the less ripple effect inducing

interfacing approach should be chosen. Incremental conversion using both approaches

(top-down and bottom-up) is not recommended because interfacing two languages in both

directions makes incremental conversion more difficult. If interfacing the source

language from the target language is chosen, then top-down fashion should be proceeded in
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the incremental conversion. Otherwise, bottom-up will be the better approach to do the

increment conversion.

3.2.3 Incremental Redesign and Rewrite

The "Incremental Redesign and Rewrite" approach is similar to the "Incremental

Functionally Equivalent Replacement", except an entire subsystem is rewritten rather than

just a single module or subprogram. The converted subsystem should be redesigned to

make full use of the software engineering capabilities of Ada, including the package

concept [KSC93]. This is one advantage over the "Incremental Functionally Equivalent

Replacement" approach.

However, the multilingual software engineering difficulties in "Incremental

Functionally Equivalent Replacement" still exists in this approach. Software engineers

still need to carefully deal with the interface problems between the converted Ada

subsystems and the original non-Ada subsystems.

3.2.4 Incremental Multilingual Rewrite

"The result of an incremental multilingual rewrite is a system that is only partially

in Ada" [KSC93]. Sometimes, to convert an entire software system into Ada is not

feasible. For example, many applications are developed on the top of some libraries or

lower-level software components in software architecture. These libraries and lower-level

software components may be developed by outside vendors. The software engineers may

not be able to convert these libraries and software components into Ada. Also, completely

converting the whole software system into Ada may not be a good idea. These lower level
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and reusable software components have been tested and used for a long time in the software

development system. These software components are reliable. Converting them into Ada

code is not very valuable. In these cases, multilingual rewriting is a feasible alternative.

The first decision in this approach is to decide which run-time system will be in

control, i.e. which language should be used in the "main" program. There are two options

in this issue: the original non-Ada language run-time system or Ada run-time system. The

first choice cannot use Ada's more valuable capabilities such as exception handling,

elaboration and generic instantiation [KSC93]

Although the original software system may not have any exceptions during the

conversion process software engineers may need to include new Ada libraries in which

exceptions are already programmed. Usually this kind of trouble is not easy to solve

because non-Ada run time systems generally cannot handle exceptions [KSC93]. Even

though some run-time systems may handle exceptions, for instance C++, the resolution of

the exceptions is different. In C++, unlike Ada, there is no exception type. All exceptions,

in C++, are const char* type [Johnston]. Therefore, the exceptions generated from

Ada libraries may not be handled by C++.

The loss of generic instantiation will inconvenience some software developers.

Ada's strong typing property supports the requirement for reliability. However, without

generic instantiation capability, Ada cannot easily create families of data structures

[KSC93]. Ada's generic capability makes it possible to solve a set of similar but not

identical problems with a single program unit [Cohen96]. Without this capability, it is too

difficult to write general-purpose, reusable software components.
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As compared with exception and generic instantiation problem, the data elaboration

problem is easy to solve. Software engineers can implement standard initialization code at

the start of each non-Ada module to replace the data elaboration capability of Ada

[KSC93].

Since the first choice loses many of Ada's valuable capabilities, the second choice,

the Ada run-time system, seems the better plan by far. In this plan, software engineers start

on creating a dummy Ada main program that calls the non-Ada main program. The dummy

Ada main program only needs to accept the command arguments and then pass them to the

non-Ada main program.

Of course, multilingual software engineering issues also need to be addressed in

this approach. Software engineers need to decide which parts of the system should remain

and which parts of the system should be converted into Ada. Additionally, the conversion

sequence of the software components needs to be determinated. A good conversion

sequence will ease the language conversion process. As presented in 3.2.2, either top-down

or bottom-up approach should be taken. Then the detailed conversion sequences may be

determined according to the characteristics of the software application or software

engineering criteria. For example, considering reuse, some modules used as public utilities

may need to be converted early.

3.2.5 Automatic Translation

The automatic translation approach uses automatic or semi-automatic tools to

directly translate the original non-Ada software application into Ada. The quality of the

conversion depends on how "smart" the automatic tool is. Generally these tools convert the
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original software application into an Ada software application that has the same function as

the original software application. However, these tools usually only use those Ada

capabilities which were already available in the original language model [Horton 85].

Simply using the automatic translation approach to convert the original language into Ada

code may not add any value.

3.3 Object-Oriented Programming in C++ and Ada95

This section introduces how object-oriented features are implemented in Ada95 and

C++. By comparing the differences of these two programming languages in object-

oriented features, software engineers can find some guidelines in how to use their

advantages when facing multilingual software engineering and language conversion issues.

The material of this section is obtained from [Martin95], [Balfour2], [Balfour3], [Taft94],

[Deitel94], [Jorgens93], and [Cohen96].

3.3.1 The Implementation of Classes

In Ada95, classes are implemented as tagged types. Methods of a class are

expressed as subprograms declared within the same package as the tagged types and having

the tagged type as a parameter or the result. Attributes of the class are declared as

components of the tagged type record.

C++ does not have the concept of a package. A class is declared by using keyword

class. Then all methods are declared within the class declaration. All methods declared

locally in the class have an implicit parameter of the class type [Jergens93]. The attributes

of the class are declared within the scope of the class declaration. Table 2 shows the
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implementation of a class in C++ and Ada95. Note that the C++ methods, inits im and

pre-draw, of the simulation class, do not have a class as a parameter. These are

different with the Ada95 methods.

If programmers want to keep an object constant when calling a method in C++, they

need to use the keyword const, unlike Ada where this is default. For example, in Table 2,

the p re_draw method of the S imu 1 at i on class will not change the state of the object if

it is called.

Table 2. The implementation of classes in Ada95 and C++ (Adapted from [Jorgens93l.)

Ada95 C++
package simulation_class is class simulation

type simulation is tagged with public:

record // list attributes below

-- list attributes here calendar::time time of creation;

time of creation : calendar.time; text message;

message : text; // declare methods

end record; virtual void initsim(;

-- common data member // use const to declare a method that won't
//change the objects' contents

TotalSimulationNo : Integer;
virtual void predraw() const;

-- declare methods below

// common data member
procedure initsim( sim : in out

simulation ); static int TotalSimulationNo;

-- The default mode of sim is "In", so the };

contents of the object passed in won't

-- be changed

procedure pre-draw( sim : simulation

end simulation-class;
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To allow all objects of a class to share common data in Ada95, programmers can

simply declare a variable in the same package where the class was declared as tagged type,

like TotalSimulationNo in Table 2. For the same reason, C++ programmers need

to declare such common data as static.

To implement an abstract class in Ada95, programmers can use the keyword

abstract to create a tagged null record and then declare the abstract class's methods as

abstract. In C++, "A class is made abstract by declaring one or more its virtual functions to

be pure. A pure virtual function is one with an initializer of = 0 in its declaration"

[Deitel94], for instance:

virtual void init sim() 0;

Table 3 shows an example how to implement an abstract class in Ada95 and C++.

Table 3. The implementation of abstract classes in Ada95 and C++ (Adapted from []orgens93].)

Ada95 C++
package simulationclass is class simulation I

type simulation is abstract tagged null public:
record;

virtual void pre draw ) { };
procedure pre draw( sim : in out simulation)

is abstract; virtual void init sim) = 0;

procedure init_sim( sim : in out simulation) };
is abstract;

end simulation-class;

3.3.2 Object Creation and Destruction

In C++, constructors are used to initialize the objects of a class when the objects are

declared, and the destructors are used to clean-up the objects of a class when the objects are
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destroyed. The constructor of a class is declared as a function that has the same name as the

class without a return result. The destructor of a class is also declared as a function without

a return result and has the same name as the class with an added "-" prefix. A constructor

is implicitly invoked when its associated class type is used in a definition or when call-by-

value is used to pass a value to a function [Deitel94]. A destructor is implicitly invoked

whenever an object of its class must be destroyed, typically upon block exit or function exit

[Deitel94].

Ada95 has similar features called automatic initialization and finalization but these

are built on one specific package, called Ada.Finalization. Only the types derived from two

predefined types, CONTROLLED or LIMITEDCONTROLLED, have these capabilities.

Ada.Finalization declares an abstract tagged type CONTROLLED along with three

operations:

procedure Initialize (Object: in out Controlled);
procedure Adjust (Object: in out Controlled);
procedure Finalize (Object: in out Controlled);

The default action of these three operations in the Ada.Finialization package does

nothing but simply return. It is expected that programmers will override these three

operations with their own required operations to more efficiently control the objects. When

an object of the derived CONTROLLED type, called a controlled object is created without

an explicit initial value, the Initiali ze procedure will be automatically called.

Whenever the controlled object has been assigned, the Adjust procedure will be

automatically called right after the assignment. The Finalize procedure will be

automatically called right before the controlled object goes out of existence [Cohen96].
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The derived types from LIMITEDCONTROLLED have the same effects except they do

not have the Adjust procedure. Since these three operations, Initialize, Adjust,

and Finali ze, are not provided to be called by the other classes, it is better to declare

these three operations in the private section, as shown in Table 4.

Table 4. The implementation of constructor/destructor in C++ and Ada95"s automatic initialization and finalization
(Adapted from [Jorgens93].)

Ada95 C++
with Ada.Finalization; class simulation I

package simulationclass is public:

type simulation is new void init sim(;
Ada. Finalization.Controlled with private; void pre draw();

Total SimulationNo : Integer;
-- -- simulation();

procedure initsim( sim : in out
simulation ); -simulationo(;

procedure pre draw( sim : in out static int TotalSimulationNo;
simulation );

private:
private calendar::time time of creation;

type simulation is new text message;

Ada.Finalization.Controlled with

record

time of creation : calendar.time;

message : text;

end record;

procedure Initialize (Object: in out
simulation);

procedure Adjust (Object: in out
simulation);

procedure Finalize (Object: in out
simulation);

end simulation class;

There are two disadvantages of Ada95 in this area [Jorgens93]:

1. Only the derived types from CONTROLLED or LIMITEDCONTROLLED have the

initialization and finalization features. Because Ada does not directly support multiple
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inheritance, these features are more difficult to use if programmers want to derive them

from the other parent types.

2. Only one constructor can be declared and it does not allow the other parameters except

the object itself. That prevents Ada programmers from writing a parameterized

constructor.

The solution to compensate for these two drawbacks is to create three similar

operations corresponding to Initiali ze, Adj ust, and Finalize and explicitly call

them at appropriate time. Although this approach loses one of the true value of these

features, automation, it still retains control of the objects.

3.3.3 Inheritance

The inheritance feature is implemented by deriving from the parent type. In C++,

there are three inheritance types: public, protected, and private. However, "Protected

inheritance and private inheritance are rare and each should be used only with great care"

[Deitel94]. Therefore, this thesis work only discusses public inheritance and its

counterpart in Ada95. In Ada95, the keyword new is used to derive a new child class. In

C++, the keyword public is used to implement public inheritance from the parent class(es)

as shown in Table 5. To override a method in the parent class, both languages redeclare the

method and reimplement it. When adding a new attribute, Ada95 programmers can add the

new attributes in a new record and the C++ programmers can declare new attributes in the

new class declaration scope, as shown in Table 5.
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To ensure that the actual operation is always alive when a call needs to be

dynamically bound, Ada95 only allows a tagged type to be derived at the same scope level

as the parent type. It is illegal to derive a new tagged type within a subprogram. For the

same problem, C++ has the strange rule: derivations within inner scopes are allowed but

their life-time is the same as the outermost scope level [Jorgens93].

Table 5. The implementation of inheritance in Ada95 and C++ (Adapted from Ujorgens93].)

Ada95 C++
with simulationclass; use simulationclass; #include "simulation.h"

package RDT Application is class RDT App : public Simulation

type RDTApp is new simulation with

-- one new attribute public:

record // one new attribute

Netobj : RDTNetManager; RDTNetManager Netobj;

end record; // override the original methods, init sim

TotalSimulationNo : Integer; // and pre draw, of the parent

-- override the original methods, init sim void mit aim);

-- and pre_draw, of the parent void pre draw(void);

procedure init sim(sim: in out simulation); // Add a new method

procedure predraw(sim: in out simulation); void post draw));

-- Add a new method

procedure post draw( sim : in out simulation );

end RDT Application;

The most important difference between Ada95 and C++ in this area is that C++

directly supports multiple inheritance but Ada95 does not. In C++, programmers can

derive a class from more than one base type. However, in Ada95, it only allows single

inheritance. Ada95 offers other ways to obtain the same effect, but that is not as elegant as

the multiple inheritance C++ provides. (This is only one particular type of multiple
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inheritance. See [Ada95a] for other cases.) Table 6 shows the way to implement multiple

inheritance in C++ and Ada95 for this type of multiple inheritance.

In C++, as shown in Table 6, window is a root class which means a simple

window. Then window with label and window with menu are two classes

derived from window. To declare a class which has label and menu, duplicated public

inheritances from window with label and window with menu are used to

achieve the multiple inheritance.

In Ada95, to achieve the same result, it is not so simple as C++. First, the root class

is declared as a tagged type. Then, two generic packages, labelmixin and

menu mixin, are created so that two types, window with label and

window with menu can be specified in add-label package and add-menu

package respectively. Finally, in add label to menu package, label mixin

generic package is recalled again to specify window with label and menu.

Obviously, implementing multiple inheritances in Ada95 is trickier than in C++.
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Table 6. The multiple inheritance of a C++ class and the similarity in Ada95 (Adapted from tJorgens93].)

Ada95 C++
package windows is class window

type window is tagged type with record I

x_position : position; position x position;

y_position : position; position yposition;

end windows;

with windows; use windows;

generic class window with label: public window

type some-window is new window; I

package label mixin is String Label;

type window with label is new some window with
record -

Label : String;

end record; class windowwithmenu: public window

end label mixin; I

with windows; use windows; menu type menu;

generic I;

type some-window is new window;

package menu-mixin is class window-withlabel and-menu:

type window with menu is new some window with public windowwithlabel,
record

public window with menu
menu : menu type;

end record;

end menu mixin;

with label mixin, menu mixin;
use label-mixin, menu mixin;
package add-label is new label mixin(window);

type window withlabel is

new add label.window with label with null;

package addmenu is new menu mixin(window);

type window with menu is

new add menu.window with menu with null;

package add labelto menu is

new label-mixin( windowwithmenu );

type window with label and menu is

new add label.window with menu with ......
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3.3.4 Polymorphism

"Polymorphism is the definition of operations that apply to more than one type"

[Cohen96]. In Ada95, polymorphism is achieved by use of tagged types and the classwide

type. If using the example in Table 5, it is possible to write a procedure, called

init any sim, as followed:

procedure initanysim( sim: in out simulation' class ) is
begin

init sim(sim);
end initanysim;

Here the simulation' class is a classwide type. "For each tagged derivation class,

there is an implicitly declared type called a classwide type" [Cohen96]. For example, if T is

a tagged type, then T'Class is T's classwide type which comprises the union of all the types

in the tree of derived types rooted at T [APR93]. Simulation' class means all types

derived from the tagged type simulation including the simulation itself. In

initanys im, it shows that programmers can actually ask the program to execute the

specific initsim by providing an actual parameter of the class-wide type

simulation' class. The Ada run time system will determine which initsim (the

init sim in simulation package or the init sim in package RDTApplication)

should be executed in run-time.

In C++, the same feature is achieved by declaring the methods as virtual in the

parent class, like in Table 2. Then C++ programmers can write a procedure as follows:

void init_anysim( simulation* sim
sim.init sim;
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However, the C++ language has at least two drawbacks in this area:

1. In C++, polymorphism is achieved for pointers, not for objects themselves. That seems

to be a subtle and error-prone distinction [Jorgens93].

2. In C++, polymorphism for an operation must be stated in the root class. Assume that

there are three classes A, B, and C and their inheritance relationship is shown in Figure 3. If

programmers later find out it is necessary to override the Method_Al of the class A in the

class C, they need go back and modify the root class A to declare the Method_Al as

virtual. In Ada95, programmers do not need to change any parent types [Jorgens93].

From the software engineers' view point, Ada is better than C++ in this situation because it

reduces the chance of recompiling.

A

MethodA1
MethodA2

B

MethodA1
MethodA2

MethodAl
~MethodA2

Figure 3. An example to describe the difference of polymorphism between C++ and Ada95.
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3.3.5 Visibility

Visibility is the ability that allows a class's attributes and methods to be accessed,

used, or read by the other classes. C++ supports three levels of visibility to a class: private,

protected, and public. The private attributes and methods of a class are only visible in the

class itself. The protected attributes and methods are visible in the class itself and all its

child classes, but nowhere else. The public attributes and methods are visible everywhere

the class can be viewed [Jorgens93].

Whereas visibility in C++ is decided solely by the class itself, the visibility of

attributes and methods of an Ada tagged type is decided by both the tagged type declaration

and how it is placed [Jorgens93]. Ada95 supports only the concept of private and public

visibility. Ada95 does not support the concept of protected attributes and methods.

However, the same idea can be achieved by using Ada95's child unit. Child units are

packages, subprograms, or generic units locally declared within a surrounding package

declaration, but physically presented to the compiler as separate compilation units

[Cohen96]. In Ada95, the public attributes and methods are visible everywhere the class is

visible, like C++. The private attributes and methods are visible only in the class itself and

to its child units. Table 7, an example from [Jorgens93], shows how the Ada95's child

package can achieve the same effect as the protected attributes and methods in C++. Also,

some guidelines for converting the C++ visibility into Ada's visibility schema are

presented in Section 4.5.4.
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Table 7. The protected attributes and methods in C++ and the child package in Ada95 (Adapted from [Jorgens93].)

Ada95 C++
package alertsystem is class alert

type alert is tagged private;

procedure handle(Object : in out alert); public:

private void handle);

type alert is tagged record protected:

time of arrival : calendar.time; calendar::time timeof arrival;

message : text; text message;

end record; };

end alert_system; class medium-alert: public alert I

package alertsystem.mediumalertsystem is public:

type medium alert is new alert with record id handle);

action-officer : person; protected:

end record; person action officer;

end medium alert system;

3.4 GNAT

3.4.1 The Advantages of GNAT in Mixed Language Programming

"GNU ( a self-referential acronym for 'GNU is Not Unix') is a Unix-compatible

operating system" [Schonb94]. The GNU C compiler (GCC) is the compiler system of the

GNU environment and is the center-piece of the GNU [Schonb94]. "GCC is a retargetable

and rehostable compiler system, with multiple front-ends and a large number of hardware

targets. Originally designed as a compiler for C, it now includes front-ends for C++,

Modula-3, Fortran, Objective-C, and most recently Ada" [Schonb94]. GNAT (an acronym

for GNU New York University Ada Translator) is an Ada95 compiler. It couples an Ada95

front end with GCC [Kenner94]. Since GNAT is integrated into GCC, many multilingual

software engineering issues can be eliminated by the integration of GNAT and GCC.
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Software engineers involved in mixed-language projects can focus on the high level

software system instead of the cross-language issues. More information about the GNAT

compilation model and the integration between GNAT and GCC can be found in

[Schonb94], [Comar94], and [Kenner94].

Table 8. The parallel data types between Ada and C++ in GNAT [SGI]

Ada type C type
Integer int

Short Integer short
Short Short Integer signed char
LongInteger long
Long Long_ Integer long long (GNU C only)
Short Float float
Float float
LongFloat double
LongLongFloat This is the longest floating-point type supported by the hardware. For the

MIPS, this is the same as LongFloat, i.e. as the C type double, which is
also available as long double in GNU C.

Ada arrays C arrays
Ada records C structures
Ada access types C pointers (except for the case of pointers to unconstrained types in Ada,

which have no direct C equivalent.)
Ada enumeration types C enumeration types (when pragma Convention C is specified)

GNAT provides two ways to interface C and C++ native data types. The first way is

to use the types in the package Interface . C and the second way is to use standard Ada

types [SGI]. The correspondence between Ada types and C types is listed in Table 8 [SGI].

The second way is less portable to other compilers, but will work on all GNAT compilers.

GNAT will guarantee the correspondence between Ada types and C types [SGI].

Since most Ada types have corresponding types in C, the data representation

interoperability issue (presented in 3.1.3) and safe types issues (discussed in 3.1.4) have

been solved by the GNAT compiler. Programmers can directly interface C types in Ada
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programs or reversely. Because GNAT has the same center-piece (GCC) as the other

front-ends in GNU, calling sequence, data structure layout etc. are automatically

compatible [Dewar94]. Therefore, the other multilingual software engineering issues

discussed in 3.1, such as call stack ordering (3.1.1), compiler dependencies (3.1.2), and

linker issues (3.1.10) are solved by GNAT.

Also, the GCC's exception handling mechanism is intended to be usable by all

GCC languages that have exceptions: Ada, C++, and Modula-3 [Schonb94]. That allows

mixed-language programs to function in the presence of language-specific exceptions and

exception handlers.

3.4.2 C++ Low-Level Interface Capability

Interfacing C++ classes from Ada95 code was a critical issue in this thesis work.

There were two reasons why it was necessary to interface C++ in this thesis work:

(1) Incremental conversion was used: In the incremental conversion process, selected C++

code was translated into Ada95. Then, the new Ada95 code and the existing C++ code

were combined to test the converted result. Therefore, it was necessary to interface C++

code so that the new Ada95 code could work together with the remaining C++ code.

(2) The foundations of RDT, ObjectSim and Object Manager, were implemented in C++:

Since these foundations would not be converted to Ada95, the code that was converted to

Ada needed to interface to the existing C/C++ software foundations.

Because of the above two reasons, it was necessary to interface C++ from Ada95 for

this thesis work. Fortunately, GNAT provides some C++ low-level interface capabilities.
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When converting C++ into Ada95, the most important C++ interface capabilities are to

interface C++ classes, including their attributes and methods, such that Ada95

programmers can still use the object-oriented concept to reuse the existing C++ classes and

develop their software applications. GNAT provides some non-standard pragmas to

interface C++ classes. These pragmas are summarized in Table 9 and the detail description

are presented in [Comar].

Table 9. The pragmas for interfacing C++ classes to Ada95 (Adapted from [Comar, SGII.)

Pragma Name Profile Comment
CPPClass pragma CPPClass( It indicates that Type corresponds to a declared

Entity => Type); C++ class type
CPPVtable pragma CPPVtable( EntryCount is the number of virtual functions on

Entity => Type, the C++ side. This pragma asks the compiler to
VtablePtr => FieldName, allow dynamic dispatching through the vtable
EntryCount=>Static Number); pointer Field Name.

Import pragma Import ( This pragma tells the compiler that the subprogram
Conversion => CPP, or variable name specified by the Entity parameter
Entity => Subprogram/Variable, is implemented in C++ and the subprogram or
ExternalName => Whatever, variable can be linked with Ada programs through
LinkName => "manually the LinkName parameter.
mangled name");

CPPVirtual pragma CPPVirtual( This pragma provides necessary information for
Entity => Subprogram, dispatching. The Position parameter tells the
Vtable Ptr => FieldName, compiler the position of the subprogram specified
Position => Static Number); by the Entity parameter in the Vtable,.

CPPConstructor pragma CPPConstructor( This pragma specifies a C++ constructor, called
Entity => Fname, Fname, and this constructor can be linked with
LinkName => "manually Ada program by the Link-Name..
mangle name");

CPP Destructor pragma CPPDestructor( This pragma specifies a C++ destructor, named
I Entity => Pname); Pname.

Basically, a C++ class with any virtual functions can be equally viewed as an Ada

tagged type. That means mixed programmers can interface a C++ class that has any virtual

functions by declaring a corresponding tagged type on the Ada side and use the above

pragmas to interface the C++ class as an Ada tagged type. However, a C++ class without
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any virtual function may not be fully compatibly interfaced as an Ada tagged type. This is

because they may have different memory layouts from the compilers' view point. A C++

class without any virtual function can be interfaced as a regular Ada record type. However,

using this fashion to interface a C++ class without any virtual function is losing its

reusability because a regular Ada record type can not be derived any further. The

inheritance mechanism of OOP cannot be used any more. Hence, it is better is to change

the original C++ classes which have no virtual function into the classes which have a

virtual function by adding a dummy virtual function in them. Therefore, the original C++

classes can be interfaced as an Ada tagged type without losing their reusability.

In order to demonstrate the capabilities of the GNAT's C++ low-level interface

capability, an example which shows how to derive an Ada tagged type from an existing

C++ class, has been extracted from [Comar]. The example, shown in Program 1, starts out

with these existing C++ classes: Origin, A, and B. In order to interface from the Ada95

subprogram to the existing C++ classes, A and B, two package specifications, which use

some of GNAT's C++ low-level interface capabilities, must be created. The package

specifications of A and B are shown in Program 2 and Program 3, respectively. Once done,

a new Ada tagged type, called C, can be derived from the C++ class B. The existing

methods which belong to C++ class A can be overridden, as shown in Program 4. Program

5 is an Ada main program to test the interface package specifications.
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class Origin I
public:
int ovalue;

1;
class A: public Origin
public:
void non virtual (void);
virtual void overridden (void);
virtual void not-overridden (void);
A0);
int a-value;

class B: public A
public:
virtual void overridden (void);
B();

int b value;

Figure 4. Program 1: Some existing C++ classes (Adapted from [Comar].)

with Interfaces.CPP;
use Interfaces.CPP;
package A Class is

-- Translation of C++ class A

type A is tagged
record
0_Value : Integer;
AValue : Integer;
Vptr : Interfaces.CPP.VtablePtr;

end record;

pragma CPP Class (Entity => A);
pragma CPP Vtable (Entity => A, VtablePtr => Vptr, EntryCount =>2);
-- Member Functions
procedure Non Virtual (This : in A'class);
pragma Import (CPP, NonVirtual, "nonvirtual", " non virtuallA");

procedure Overridden (This : in A);
pragma CPP Virtual (Entity => Overridden, Vtable_Ptr => Vptr, EntryCount => 1);
pragma Import (CPP, Overridden,"", "overriden lA");

procedure Not Overridden (This : in A);
pragma CPP Virtual (NotOverridden);
pragma Import (CPP, NotOverridden,"", "_notoverriden lA");

function Constructor return A'class;
pragma CPP Constructor (Entity => Constructor);
pragma Import (CPP, Constructor, "A", "IA");

end AClass;

Figure 5. Program 2: The interface package specification of the A class (Adapted from [Comar].)
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with Interfaces.CPP;
use Interfaces.CPP;
with AClass;
package BClass is

-- Translation of C++ class B

type B is new AClass.A with
record
B Value : Integer;

end record;

pragma CPPClass (Entity => B);

function Constructor return B'class;
pragma CPPConstructor (Entity => Constructor);

procedure Overridden (This : in B);
pragma CPP Virtual (Overridden,Vptr,l);
pragma Import (CPP, Overridden, "Overridden", "overriden lA");

end BClass;

Figure 6. Program 3: The interface package specification of the B class (Adapted from [Comar].)

with Interfaces.CPP;
use Interfaces.CPP;
with B Class;
package AdaExtension is

type C is new BClass.B with
record
C Value : Integer := 3030;

end record;

-- no more pragma CPPClass, CPP Vtable, or
-- CPPVirtual: this is a regular Ada tagged type

procedure Not Overridden (This : in C);
pragma CPP Virtual (NotOverridden,Vptr,2);
pragma Import (CPP, NotOverridden,"", "_notoverriden lA");
end AdaExtension;

with TextIO; use TextIO;

package body Ada Extension is

package IntIO is new TextIO.Integer_IO(Integer);
procedure Overridden (This : in C) is
begin

Put(" in Ex6 If.Ada Extension.Overridden, a-value =");
Int IO.Put(This.A Value);
Put (",b value = "T;
Int IO.Put(This.B Value);
Put(",c value = "T;
Int IO.Put(This.CValue);
New Line;

end Overridden;
end AdaExtension;

Figure 7. Program 4: A package that derive a new Ada tagged type from the existing C++ classes

(Adapted from [Comar].)
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with A Class;use AClass;
with B Class;use B Class;
with Ada Extension;use AdaExtension;
procedure Ada main is

A_Obj A _Class.A;
B_Obj B-Class.B;
C_Obj Ada Extension.C;
procedure Dispatch (Obj : AClass.A'class) is
begin

Overridden (Obj);
Not Overridden (Obj);

end Dispatch;
begin

Dispatch (AObj);
Dispatch (BObj);
Dispatch (CObj);

end Ada-main;

Figure 8. Program 5: An Ada procedure to test the GNAT's C++ low-level interface capability

(Adapted from [Comar].)

The main difficulty in using GNAT's C++ low-level interface capability is that it's

time-consuming. GNAT's C++ low-level interface capability is defined for third party

vendors, not for programmers [Comar]. In order to use this capability, the following must

be done.

* The correct manually mangled name for Link-Name parameters must be found

by hand. When a program accesses to an object which is defined in another programming

language, the accessing programming language linker must know the link symbol name of

the accessed object. So, the linker can link all programs together. Otherwise, the foreign

object cannot be resolved in the linking phase. The manually mangled name of a object is

the link symbol name which is named by the foreign language compiler. By providing the

correct manually mangled name, the linker can correctly link the link symbol name of the

object. Since GNAT is only an Ada compiler, in order to understand the interfaced C++

classes, Ada programmers must tell the GNAT linker to link the interfaced C++ classes

from the C++ object files. Manually mangled names form the bridge to connect the GNAT

48



linker and the interfaced C++ object files such that the GNAT linker can correctly link the

existing C++ object files with the Ada code. The C++ compiler can be forced to compile

the existing C++ code without involving any linking actions. Then, the nm command is

used to find the appropriate LinkName. To find the appropriate LinkName by hand is

not difficult but it is time-consuming. Because this is not a typical activity for traditional

single-language programmers, care must be taken so that the correct link name is identified.

e The C++ user-defined types must be converted into Ada. Most complex and

large systems define many user-defined types for their system-wide use. Converting native

C types into Ada is easy, but converting user-defined types is difficult and time-consuming.

Compilers can easily identify user-defined types that may be declared hierarchically in

different header files in most cases. However, for a human, it is a difficult and error-prone

process to hierarchically search the user-defined types and then make correct type

conversions.

e To derive a tagged type from a C++ class, all attributes and methods of the C++

class and its ancestors must be declared. However, manually creating package

specifications to interface the existing C++ classes is very difficult because cross-

references among the C++ classes which are derived from all its ancestors must be made.

Therefore, the interface between the higher level application and low level foundation of

the software architecture cannot simply be cut.

For example, consider Figure 2 in Section 2.2. In this conversion case, five package

specifications to interface the existing ObjectSim C++ classes must be created:

Simulation, BaseNetPlayer, AttachablePlayer, SimpleTerrain,
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and View. However, in order to create the interface package specification for

Base NetPlayer, care must be taken to assure the attributes and methods declared in

Player are declared in the interface package specification of BaseNet Player.

Further, this may imply that the data types used by Player and Base Net Player

also need to be converted to the corresponding Ada data types.

These tasks can be significantly simplified if done by automatic tools. It is very

time-consuming to manually interface C++ classes, especially for large and complex

systems. If the existing C++ classes are part of a large inheritance tree and many user-

defined types exist, then many package specifications for all directly and indirectly

included C++ header files must be created.

It is also possible to interface an Ada tagged type as a C++ class from C++

programs. However, interfacing Ada programs from C++ programs is not recommended

for this incremental conversion work. Using GNAT to interface Ada modules from C++

programs is the better way to interface. It is more difficult to go from C++ modules to

interface Ada programs. When interfacing Ada modules from C++ programs, in addition

to needing to export the ExternalNames of Ada subprograms or variables, it is also

necessary to declare these interfaced subprograms or variables as external in the external

declaration section. Modifying all C++ modules which refer to these subprograms or

variables is required. Therefore, the ripple effect to interface Ada programs from C++

programs is larger than to interface C++ programs from Ada programs.

To convert C++ programs into Ada programs, it will be best to interface C++ code

from the Ada side rather than to interface the Ada programs from the C++ side. GNAT's
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C++ low-level interface capabilities also allow to interface an Ada tagged type from C++

programs. However, only interfacing C++ classes from Ada programs is recommended in

this thesis work. Appendix I shows an example to interface an Ada tagged type from C++

programs. In that example, it is clear that interfacing an Ada tagged type from C++

programs are worse than interfacing a C++ class from Ada programs. To interface

converted Ada modules, some C++ software modules must specify the link symbols of all

member functions of the converted Ada tagged types in their external declaration sections,

if the C++ software modules call the member functions of the converted Ada tagged types.

This causes the ripple effects to be spread over the other unconverted C++ software

modules. On the other hand, if only interfacing C++ classes from Ada programs is used, all

needed changes will be limited within the converted Ada modules and the original C++

modules will not be changed. Therefore, interfacing an Ada tagged type from C++

programs is not recommended. Because only interfacing C++ classes was used, top-down

conversion is the better choice for converting a C++ software application into Ada in this

thesis work.

3.5 Adabindgen

Adabindgen, standing for "Ada Binding Generator", is a tool created and supported

by SGI. It can read C++ header files and generate the Ada package specification that

contains GNAT's pragmas to interface the existing C++ classes. Then, the existing C++

code can be reused without reimplementing the package body. It helps mixed-language

programmers focus on high level programming issues instead of the GNAT's C++ low-

level interface issues. This tool automatically gives a correct link name for a member

function or variable. Hence, the correct manually mangled name need not be searched for.

51



It also automatically searches all applicable header files to convert all C++ types, including

user-defined types, into Ada types. Since all C++ header files can be automatically

converted into Ada package specifications, creating Ada package specifications for all the

existing C++ classes' header files is possible and mixed language programming is feasible.

However, the philosophies behind C++ and Ada are quite different. This makes directly

translating C++ header files into Ada package specifications more difficult. Basically,

Ada has stronger restrictions and some restrictions result in difficulties in correctly

converting C++ header files into Ada package specifications. Therefore, sometimes,

Adabindgen may not be able to correctly convert C++ header files into Ada package

specifications because of the essential differences between C++ and Ada.

Some of the essential differences between the two languages are listed below:

1. In C++, circular references can exist. For example, a class header file can

reference (via the include preprocessor directive) a second header file which directly or

indirectly references the first header file. This situation is not allowed in Ada. Ada does

not allow a package to use the with clause to access another package that also uses the with

clause to directly or indirectly access the original package. This so-called mutual

dependency problem will be discussed in the next chapter.

2. In C++, a member function of a class in a C++ header file can be directly

implemented. In Ada, a member function cannot be implemented in a package

specification.
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3. The visibility of a C++ class's attributes and methods has three levels: public,

protected, and private. Only public and private visibility is supported in Ada95. Protected

attributes and methods must be carefully translated into Ada.

4. C++ is a case-sensitive language but Ada is not. For example, FONTA and

FONTa are different variables in C++, so they have different link names. However, FONTA

and FONTa are the same variable in Ada. Adabindgen can generate two pragmas such that

these two variables in C++ can be imported to Ada with two different link names, but the

entity names are still the same for the Ada compiler.

Because of these differences, converting C++ programs into Ada programs is not

simply a matter of converting a language's data types and statements into another

language's data types and statements. To some extent, one language's programming style

must be converted into the other language's programming style. The next chapter will

present a methodology to accommodate these differences.
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4 Methodology

Because of the essential differences between C++ and Ada, as well as the

restrictions of GNAT's C++ low level interface capability, directly translating from C++ to

Ada, as presented in [Uhde95b], may not be straightforward. In contrast to this approach,

this thesis presents a feasible incremental language conversion procedure consisting of the

following phases:

" Reorganize the software application

" Break mutual dependencies

* Create interface package specifications

" Convert C++ code into Ada

" Embellish

4.1 Reorganizing the Software Application

Reorganizing the original software application consists of separating specification

from implementation for each software module in the original C++ application so that each

header file has only one class's declaration and the implementation of the class is in the

corresponding source-code file. The products after this phase are still C++ programs.

After this phase, the software system should be rebuilt to verify that the reorganized

software system has the same functionality as its original code. The goal of this phase is to

reorganize the C++ application so that it looks like the package style of Ada programs.
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In Ada, the package is a principal program structure that supports several software

engineering principles: information hiding, abstraction, separation of specification and

implementation, and modularization [SPC95]. Two goals of using Ada in large and

complex software projects are: division of large programs into manageable modules and

generation of reusable software components. Both of these goals are supported in Ada by

the package [Cohen96].

A C++ header file plays a role similar to that of the package specification in Ada

and a C++ source-code file plays the role of the package body in Ada. So, C++ file

modules loosely correspond to an Ada package, however Ada's package has several

advantages over C++. First, Ada package specifications and bodies can be compiled

separately, but C++ header files cannot be compiled separately. The second advantage of

Ada is that Ada strictly separates the specification in the package specification from

implementation in the package body. From the software engineers' point of view, this is an

advantage because it forces programmers to separate software specification and

implementation. However, C++ programmers can implement inline functions within a

header file. A C++ inline member function is a member function whose implementation is

contained in a class declaration in a header file. From the software engineers' point of

view, this exception allows programmers to program in a sloppy fashion.

In order to make further conversion processes smoother and let the converted

application take advantage of the package concept of the Ada language, it is necessary to

reorganize the original application so that it has Ada's package style. Actually, this style is

also a good programming style in C++.
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The necessary knowledge in this phase is only the high-level structure of the

software system and the C++ program structure mechanism. Detailed language syntax

knowledge and programming skills are unnecessary. In this phase, the following issues

must be considered:

1. Global variables should be collected and only declared once in one module. The

other modules should declare global variables as extern. In order to avoid duplicate

declarations of the global variables, it is better to declare all global variables in one module

and use preprocessor directives to tell the C++ compiler to correctly include global

variables. Here is a good style for the global variable declaration header file:

#ifndef _MAIN PROGRAM_
<normal global variables declaration>
#udef MAIN PROGRAM
#else
<declare the global variables as external>
#endif

Then, only the main program should include the global variables header file in this fashion:

#define MAIN PROGRAM
#include "global.h"

2. Logically in C++, #include means to copy the included header files into this

module. Therefore, developers need to carefully use preprocessor directives to protect the

software module from multiple inclusion and circular references, because multiple

inclusion and circular references make the program extremely difficult to debug

[Martin95]. A good C++ programming style to prevent this problem is to use the following

preprocessor directives in sequences [Martin95]:
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#ifndef filename-symbol //If file_name_symbol has not been defined,
#define file name_symbol //then define filename_symbol.
<the rest of the module>
#endif

Then the other header files which need to include this header file should have the following

style:

#ifndef file-namesymbol /If filename symbol has not been defined
#include file name //then include file name.
#endif

3. Strictly separating implementations from header files should be done. The

implementations of inline member functions should be moved to its source-code file. Even

though the programming style of inline functions can improve performance, it is not good

software engineering practice [Deitel94]. Hence, programmers should separate C++ class

implementations from C++ class declarations. For example, a C++ class constructor can be

declared and implemented in the following way:

class ClassA {
public:
ClassA(){< implementation >};

I;

Instead of declaring a class in this way, programmers should strictly separate declarations

from implementations in this way:

class Class A
public:
ClassA(;I};

Then implement the constructor in the source-code file:

Class A::Class A(void){ < implementation > };
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There are two major reasons for this programming style. First, if an inline function

temporarily contains nothing, C++ compilers may not generate a link symbol for this inline

function since the inline function contains no code. Most C++ compilers may optimize the

object code and will not give the inline function a link symbol, because they will not be

used in the actual program execution. Therefore, mixed language programmers cannot use

nm to find the "manually mangled name" to interface it. The second reason is that the

header file won't need to be modified if the implementation is fulfilled in the future. For

applications where performance is critical, the functions can be implemented as Ada inline

subprograms during the fifth phase by using Inline pragma. Therefore, the

subprograms can be expanded in line at the call site [Ada95b].

4. A dummy virtual function should be added into the root classes which have no

virtual functions. Since a C++ class without any virtual function does not completely

correspond to an Ada tagged type, a dummy virtual function should be added in order to

have an absolute one-to-one mapping relation. A C++ class may be converted to a regular

Ada record type, but it cannot be used as a root class or be used to derive a new child class.

A C++ class without any virtual functions also may be interfaced as an Ada tagged type.

However, in this case, the C++ language compiler (SGI CC compiler), and GNAT may use

different memory layouts for the objects that should be in the same class from the object-

oriented programmer's view point. This is a dangerous interface option, because an Ada

access type object may point to the wrong position of an interfaced C++ class array.

Therefore, software engineers should convert this C++ class with the dummy virtual

function into a fully compatible Ada tagged type in later conversion phases.
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5. A member function which modifies the class data attributes and has a return

value must be changed into a member function without a return value, because an Ada

function cannot have in out mode parameter. Appendix J presents the rules for converting

C++ functions into Ada subprograms. It also explains why it is necessary to change these

kinds of C++ class member functions into the member functions without a return value.

These procedures must be done in this phase, so the changed C++ class member functions

can be directly converted into Ada procedures in the fourth phase.

In this conversion case, the original RDT main program encapsulated several

classes in the main module. After reorganizing the original RDT application, each software

module contained only one class declaration or implementation. The software modules of

reorganized ObjectSim and RDT are listed in Appendix B. Appendix J lists the changed

member functions and the ripple effects which are related to the issues discussed above in

the previous paragraph. The reorganized RDT has been rebuilt to do some high-level

function tests. Since the detailed operation functions of RDT were not well documented

before, no formal testing procedures were followed to verify whether its original

functionality has been completely meet. Based on some rough high-level function tests, the

original high-level functions of RDT seem to be retained.

4.2 Breaking Mutual Dependencies

Mutual dependency is a circular reference among software modules. In C++, a

module may use the #include preprocessor directive to refer to some declarations in the

other modules. Similarly, in Ada, a compiler unit can use with clauses to refer to some

declarations in the other packages. There is one important difference between these two
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languages in this issue and this difference makes direct conversion from C++ to Ada more

difficult.

In C++, programmers can have co-dependent class declarations in different header

files. C++ programmers can first roughly declare a C++ class and later declare the detailed

contents in another header file. For example, C++ programmers can declare a member

function which has a parameter and the type of this parameter is another C++ class:

#include "Class A.h"
class Class A;
class ClassB {
public:

<< data attribute declarations >>
void B func(ClassA* A);

The same situation may be needed for Class A declaration in file classA.h to refer to

ClassB:

#include "Class B.h"
class Class B;
class ClassA {
public:

<< data attribute declarations >>
void A func(Class B* B);

In this case, if we simply directly convert C++ header files into Ada package

specifications, the results will look like the following Ada package specifications:

with class B; with class A;
package class A is package class B is

end classA; end class B;
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This causes mutual dependency problems because the Ada language does not allow

programmers to use with clauses in a package specification to access another package

specification if the referred package specifications directly or indirectly access back to the

original package specification. This kind of circular references between Cla s sA and

C 1 a s sB is a mutual dependency.

Obviously, some reengineering work is needed to conquer mutual dependencies in

the language conversion process. Two choices can be taken [Quiggle96a]:

1. Modify the existing C++ header files to eliminate mutual dependencies prior to

converting the C++ header files into Ada package specifications or

2. Modify the converted Ada package specifications to eliminate the mutual

dependencies.

The disadvantage of the first option is that software engineers need to reengineer the

original software system. However, some original functions provided by the low-level

software architecture will be lost. For instance, in this RDT conversion case, some mutual

dependencies exist in the header files of ObjectSim which is the foundation of RDT. If

software engineers break these mutual dependencies, some original functions provided by

ObjectSim will be lost. Therefore, referring to Figure 1, since RDT is an application on the

top of ObjectSim, some extra work must be done to recover the lost functions that were

originally provided by ObjectSim.

The second option can preserve all original functions but software engineers can

not identify whether they successfully broke mutual dependencies until the main program

has been converted into Ada code. On the other hand, the first option can verify the success

of breaking mutual dependencies in the early phase. After modifying the existing C++
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source code to break the mutual dependencies, the software application can be rebuilt to see

whether the software system can function as well as before.

If the first option is chosen, a system dependencies diagram should be drawn to find

all mutual dependencies in the software system. The system dependencies diagram is a

diagram which describes the inclusion dependencies among all software modules. In a

system dependencies diagram, each node stands for a C++ header file and a directed link

from node A to B means that header file A includes header file B. If there is a cycle

between any pair of nodes, the two nodes are mutually dependent on each other. A decision

then has to be made as to which directed link in the cycle should be broken to solve the

mutual dependency problem.

Appendix C.3 presents a way to minimize the loss of functionality in a software

architecture when breaking mutual dependencies if the first option is chosen. Chapter 12 of

[Cohen96] presents another method to break mutual dependencies. If the second option

was chosen, Cohen's method is another way to solve mutual dependency problem.

This thesis effort to convert RDT used the first option. All mutual dependencies

occurred in ObjectSim. The simplified system dependencies diagram of ObjectSim, the

modified ObjectSim header files, and the rationale are presented in Appendix C. The

modified ObjectSim has been informally verified by rebuilding RDT and interfacing it to a

small application called "testsim".

4.3 Creating Interface Package Specifications

In this phase, the necessary interface package specifications to interface the existing

C++ code must be created. Usually one C++ header file is converted into one Ada package

specification to interface the corresponding C++ source-code file. Adabindgen is a good
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tool in this phase. However, because of some technique problems', the package

specifications generated by Adabindgen must be examined and modified, if necessary, so

that the generated package specification can correctly interface the existing C++ code.

Unit testing for each interface package specification is recommended in this phase.

It assures each created Ada interface package specification can correctly link to the existing

C++ code. This step will help to avoid problems in the later conversion phase. In order to

do unit test in this phase, the interface package specifications should be created and tested

in a bottom-up fashion according to the system dependencies diagram. Since all mutual

dependencies were broken in the previous phase, the system dependencies diagram should

now be a diagram without any cycles. If a top-level header file was converted into an Ada

package specification, the package specification cannot be compiled until all the original

header file's included header files have been converted into Ada package specifications as

well. Moreover, if the top-level package specification requires modification and

recompilation, then all its referred to package specifications need to be recompiled again as

well. Therefore, creating the interface package specifications in a bottom-up fashion is

better. After a bottom-level header file has been converted into an Ada package

specification and has passed the unit test, it will not be further modified. This reduces the

chance of recompiling.

Whether they are used or not, two basic access types must be defined in the

interface package specifications. One is XClass Ptr and another is

1 During this thesis work, adabindgen was still under testing. It was an alpha-version software product. In
some cases, adabindgen cannot convert a C++ header file into a perfect Ada package specification.
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XClassClasswidePtr where X is the class name. They should be defined as

follows:

type XClass Ptr is access all X Class;
type XClassClasswidePtr is access all XClass'class;

These two basic access types are used very often, especially for converting a polymorphic

member function. Declaring them in the early phase can avoid defining them later when it

is found necessary to define these two types. The advantage is that the interface package

specifications will not need to be compiled again.

Also, the problems raised due to C++ being case-sensitive should be solved in this

phase. There is a semi-automated method to solve this problem. One of the collision

variable names can be renamed and used as the entity name in the "Import" pragma, there

by associating it to the same link name. In this way, the renamed variable in the Ada

program can be used while the original variable name is used in the C++ program. For

example, FONTA and FONTa are two different variables in C++. Adabindgen will use

import pragma to interface these two variables between C++ and Ada:

pragma Import (C, FONTA, "FONTA", .....

pragma Import (C, FONTa, "FONTa",... );

However, in Ada, the entity name FONTA and FONTa are same. So, GNAT will think one

entity has two different link names and generate a compiler error. The better way to solve

this problem is to rename FONTa and use the name that will be used in Ada programs. For

instance, the above two Import pragmas should be modified in the following way:
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pragma Import (C, FONTA, '"FONTA". ..... );

pragma Import (C, LittleFONTa, "FONTa",...);

This way, C++ code of the existing program need not be modified and Little FONTa

will be linked to the original C++ link name FONTa.

Since the visibility of a C++ class is quite different than the visibility of Ada95's

tagged types, converting the visibility of a C++ class into the visibility of an Ada tagged

type is not recommended in this phase. It is better to temporarily convert all member

functions and attributes of a C++ class into public methods and attributes of an Ada tagged

type first and then convert the visibility of a C++ class into Ada's information hiding

schema at the last phase (Section 4.5).

There are at least three reasons to support this argument. First, it does not hurt

anything for language conversion. Second, it keeps the purpose of this phase simple and

achievable. The goal of this phase is to correctly interface the existing C++ code. If the

visibility of a C++ class is converted into the visibility of an Ada tagged type in this phase,

it will be difficult to identify the actual cause of problems should they occur in this phase.

The problems may be caused by incorrect visibility conversion or erroneously interfacing

the existing C++ code. Third, it is not impossible to convert a C++ class's visibility into

Ada's visibility schema but it is complicated, especially when a C++ class has public,

protected and private attributes and member functions mixed together. "Thus, translating

from C++ to Ada95, what is needed is not only a mechanism to implement the C++ concept

of protected visibility in the Ada95 translation, but also a mechanism to change visibility

within an Ada95-derived class" [Uhde95b]. The visibility problem of a C++ class is not a
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simple problem of the class itself. It is related to all its derived classes and the other classes

existing in the system. Simply focusing on a class's visibility conversion is not adequate.

Usually, that only solves the problems for one class. Also, usually the problem is solved

based on the philosophy of C++ and not Ada's mechanism at this point. This is because the

original C++ programs were designed according to C++ mechanisms. Simply converting

the visibility of a C++ class into Ada results in the C++ mechanism being implemented in

Ada. The original system design must be modified to use Ada's mechanism instead of

simply translating the C++ visibility concept into Ada95. Therefore, it is better to make

sure that the converted Ada programs meet the original functions of the original C++

programs in the early phase. Then the visibility of each class is examined. The converted

Ada program is then reengineered by using the visibility mechanism and hierarchical

library program structure of Ada95 to give appropriate visibility to each class. In summary,

converting the visibility of a C++ class in the last phase (Section 4.5) is recommended.

One other point should be made in this phase. To convert a header file that

contains global variable declarations, each global variable must be exported to the C++

code instead of importing global variables into Ada. Otherwise, unresolved link symbol

problems will be encountered after the whole system is converted into Ada because the

C++ global variables declaration header files are not used anymore.

4.4 Converting C++ Code into Ada Programs

The goal of this phase is to convert the C++ software into Ada. Modules can be

converted one at a time. A software module can be a subprogram or a class. Since

interfacing an Ada tagged type from a C++ program is not recommended, the C++ main
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program must be converted first. Then the other C++ code should be converted into Ada

programs in a top-down fashion. The objective in this phase is to convert each statement of

the original C++ code into Ada expressions. Therefore, the knowledge to map C++

statements into Ada expressions is required

Most difficulties encountered in this phase deal with interfacing the C++ system

libraries. In the SGI operating system, IRIX 5.3, SGI has created Ada interface packages to

interface the C++/C system libraries. The Convention pragma need not be used to

interface the C/C++ library functions. Most of the time, the appropriate Ada specifications

for the C/C++ system library functions are available and the problem becomes one of

figuring out how to directly make a correct C++/C system library call in Ada. The

problems are not difficult but may take time for novices.

If the second option presented in Section 4.2 is chosen to solve the mutual

dependency problems, then it should be applied in this phase. Also, after the main program

is converted into Ada, the software system should be rebuilt to verify whether breaking

mutual dependencies was successful.

After the C++ main program is converted into Ada, a C++ function can be

converted into an Ada subprogram in a top-down way. At first, the C++ functions at the top

level of the calling dependency diagram must be converted first, because interfacing Ada

programs from C++ programs is not recommended in this thesis work.

The calling dependency diagram of a software system is a diagram that describes

the calling relationship of procedures and functions in the software system. The diagram

shows which functions are called by a specified function and which functions call this
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specified function. This diagram is a roadmap to guide in picking which functions should

be converted in the next step. The calling dependency diagram of RDT is included in

Appendix D.

A C++ function can be converted into an Ada subprogram according to the rules

presented in Appendix J. One problem may be encountered in this phase. In C++, it is

allowed to declare a local static variable in a C++ function. In this way, the local static

variable will retain its value when the function is exited. So, when the function is called

next time, the static local variable will contain the value it had when the function last exited

[Deitel94]. In this respect, Ada has no static variables, but the same result can be achieved

by declaring the variable in the package level rather than in the function. Using this

method, the value of the variable can be preserved if the function is called the next time. It

is recommended to declare the variable in the package body. Because the local variable is

only used in the function, it is unnecessary to declare it in the package specification to be

visible by other packages.

When the implementation of a C++ function is converted into an Ada subprogram

in a package body, the Import pragma can be commented out in the Ada interface

package specification. In this way, GNAT will compile and link the converted Ada

subprogram instead of the existing C++ function.

After a C++ function or several related C++ functions are converted into Ada

subprograms, the software system should be rebuilt to test if the converted subprograms

work as well as the original C++ functions. This completes a single subprogram
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conversion cycle, which is continuously repeated until all C++ functions are converted into

Ada programs.

After all methods in an interface package are converted into Ada programs, all

import pragmas should have been commented out. At this point, the CPPClass,

CPP Virtual, CPP Vtable pragmas and the Vptr declared in the tagged type record

can be removed. Because, at this point, the class has been completely converted into Ada

implementation, all of GNAT's C++ low-level interface pragmas in the package

specification are no longer needed any more. Also because C++ functions were converted

in a top-down way, no other C++ functions will call this converted Ada subprogram.

4.5 Embellish

Even though all C++ code was converted into Ada programs after the previous

phase, some embellishing work should be done to promote the quality of the converted Ada

program. Possible embellishing works are renaming, polymorphism perfection, recovering

subprogram parameter types, use of Inline pragmas, class visibility remapping, and

program structure reorganizing.

4.5.1 Renaming

Some renaming work is necessary in this phase. In C++, a class is defined as a type

and declared in a header file. Basically, the class name is the same as the header file name.

However, in Ada, a class is implemented as a tagged type in a package. Ada does not allow

a tagged type to have the same name as the package name. Therefore, an additional

appropriate name for the package is necessary. In the third phase of this conversion
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methodology, Adabindgen converted a C++ class name into an Ada tagged type name and

the header file name was taken as a package name. For example, if a C++ class declaration

called ClassA is made in file classA.h, ClassA will be converted into an Ada tagged

type and the package name will be classA h, It is recommended to keep this naming

convention in the third phase but rename them in the fifth phase, because this is not a good

naming convention. Two naming conventions have already been proposed by

[Cemosek93] and [Rosen95]. Both conventions take the class name as the package name

and use the identifier "Object" as the name of the Ada tagged type name. Otherwise, some

other consistent naming convention rules can be applied.

4.5.2 Polymorphism Perfection

Polymorphism in C++ is achieved for pointers, not for objects themselves. This is

a subtle and error-prone distinction [Jorgens93]. Since polymorphism is only possible by

pointers in C++, the pointer is typically converted into the class-wide access type of an Ada

tagged type. This method should work in conversion but is not the best programming style

in Ada. In Ada95, polymophism can be achieved by access types like C++'s pointers or

class-wide types themselves. The initialization and finalization of objects in Ada is only

allowed for objects, not for access types. Therefore, it seems classwide types are better

than access types for polymorphism. The converted Ada programs should be modified so

that polymorphism is achieved via classwide types. For example, consider a member

function declared as follows:

void initanysim( simualtion* sim );
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After the third phase of this methodology, a specification of this subprogram could be

declared as follows:

procedure init anysim(sim: SimulationClassWidePtr );

where SimulationClassWidePtr is declared as follows:

type SimulationClassWide Ptr is access all

Simulation' class;

In this phase, it is recommended to change the above subprogram specification as follows:

procedure init any_sim(sim: Simulation'class);

Of course, some change in the correspondent subprogram body may be necessary.

4.5.3 Recovering Subprogram Parameter Types

Recovering subprogram parameter types involves correcting the subprogram

profile distortion induced during the first phase. Appendix J presents a solution for

converting a C++ class member function which has a return value and also modifies its

class data attributes into an Ada subprogram. During the first phase, the original C++

function must be changed into a C++ function which has no return value and the return

value should be passed back by a new added additional parameter whose type is a pointer of

the original value type. Then, the modified function can be converted into an Ada

procedure and the new added parameter must be converted to an access type of the original

value type.

However, the solution presented in Appendix J has a disadvantage. The original

C++ function has a direct return value, so the return value can be directly accessed. In the
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fourth phase, the C++ function is converted into an Ada procedure and the return value

becomes an access type of the original value type, so the return value only can be accessed

in an indirectly fashion. This is the subprogram profile distortion. After the entire

application has been converted into Ada programs, this distortion should be recovered

during the fifth phase. The recovering method and work are also presented in Appendix J.

4.5.4 Use of Inline Pragmas

Use of Inline pragmas may reduce subprogram call overhead. This work is

needed only when the performance of the program is really a problem. In the first phase,

the original C++ inline functions were changed into non-inline functions and their

implementations were moved out of the header files. The inline functions no longer exist

after the first phase. Therefore, for applications where performance is critical, these

original inline functions may need to be reinserted in the fifth phase.

Ada95 provides Inline pragmato help programmers reduce the subprograms call

overhead, but Inline pragmas should be used with extremely caution. If a pragma

Inline applies to a callable entity, this indicates that the inline expansion is desired for all

calls to that entity [Ada95b]. However, use of inline pragmas may violate good

programming style because it may significantly increase the amount of recompilation

[Cohen96] . Also, the Ada compiler may ignore the recommendation expressed by the

Inline pragma [Ada95b]. So speeding up the execution time may not be achieved. In

some cases, use of Inline pragmas can even slow the calling program instead of

speeding it up [Cohen96]. Therefore, Cohen suggests programmers use Inline pragmas
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once it is determined that execution time is really a problem [Cohen96]. If programmers

decide to use Inl ine pragmas, they should be added in this phase.

4.5.5 Class Visibility Remapping

Class visibility remapping involves reexamining the visibility of classes in the

original C++ programs and then making necessary changes to fit Ada's visibility schema.

In C++, there are three levels of visibility to a class: private, protected, and public.

However, the visibility of attributes and methods of an Ada tagged type only has two levels,

public and private, and the visibility is determined by both the tagged type declaration and

how it is placed [Jorgens93].

Section 4.3 explained why it is better to reexamine the visibility of classes and

implement in Ada's visibility mechanism in this phase. Therefore, a mechanism to convert

the C++ classes visibility to fit Ada's visibility mechanism is necessary.

The following rules are some guidelines to convert the C++ class visibility into the

Ada visibility mechanism:

" The C++ public attributes and member functions should be implemented as public

attributes and methods in the Ada package which declares the corresponding tagged

type to the C++ class.

" The private member functions of a C++ class might be mapped to local Ada

subprograms within the package body which implements methods of the class.

" The private data attributes of a C++ class can be mapped to local variables within the

package body. The private data attributes of a C++ class can also be declared as

limited private incomplete type variables in the public section of the package
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specification and the incomplete type should be declared in the package body. An

incomplete type declaration has the form "type type-name; ". A declaration of

the incomplete type will be followed by a full declaration of the named type

[Cohen96].

The protected data attributes and member functions of a C++ class can be mapped into

the private data attributes and methods within the Ada package specification.

These guidelines can help in the conversion of C++ class visibility into Ada's

visibility mechanism. However, simple conversion from the C++ class visibility into

Ada's visibility mechanism is not recommended because the C++ class visibility results

can not be achieved. To achieve the same result, the hierarchical libraries mechanism of

Ada95 must be implemented in the converted Ada programs. That will be discussed in the

following subsection.

4.5.6 Program Structure Reorganizing

Program structure reorganizing must take full advantage of the Ada's program

structures. In this phase, all the advantages of Ada's program structures (subprogram,

package, and hierarchical libraries) should be used to restructure the converted Ada

programs such that the converted Ada programs are well-structured. "Well-structured

programs are easily understood, enhanced, and maintained" [SPC95].

Before this phase, the converted Ada programs were still based on the C++ program

structure: header file, source-code file, class, and function. The first phase of this

methodology was to reorganize the original C++ software system such that the original

C++ code has a style similar to Ada's package style. After the fourth phase, the converted
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Ada programs only benefit from Ada's package concepts. The converted Ada programs

have not yet benefited from the use of hierarchical libraries.

In Ada's hierarchical libraries mechanism, child packages allow programmers to

create more precise packages with a less cluttered interface and to extend the interface as

needed [SPC95]. Cohen states that child units (packages) have the following important

uses [Cohen96]:

" avoiding large files and associated pragmatic problems that result from deep physical

nesting

" expressing the hierarchical decomposition of a large system into subsystems

" avoiding name clashes among independently-written components of a large program

" decomposing the interface of a module into two or more parts, intended for different

clients and separately specifiable in with clauses

" enhancing a package as a program evolves over time with minimal disturbance to

existing code, including other programs that may continue to use the original

definition of the package

" adding personal customizations to a shared package that will not affect other users of

the package

Since Ada's hierarchical libraries have so many advantages, there is no reason not

to use it. The idea of Ada's hierarchical libraries should be used to reorganize the

converted Ada programs such that the converted Ada programs are well structured after

this phase.

The work in this phase is critical to the quality of the converted Ada programs. The

goals of the first four phases are to convert the original C++ software system into Ada
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programs and not to lose any original functional requirements. The goal of this

methodology is not only to convert C++ code into Ada programs but also to promote the

quality, reliability, and maintainability of the converted software system. This is the real

value of converting a C++ software system into Ada. Ada helps programmers to

implement software engineering principles and forces programmers to use the principles of

software engineering such that software systems written in Ada can be easily understood

and maintained. It is a programming language for software engineers, not just for

programmers. After this phase, the converted Ada programs should benefit from most of

Ada's advantages. Finally, the goal of language conversion is achieved by this

methodology.
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5 Results and Lessons Learned

Most problems and difficulties in this thesis work occurred because mixed language

programming is more different than typical single language programming. Single language

programmers only need to understand one language mechanism, while mixed language

programmers not only need to understand two language mechanisms, but also have to

figure out the strengths and weaknesses of each language and identify the subtle differences

between C++ and Ada95. Both languages are complicated. To completely understand one

of them is difficult; to understand two is a great task. To use the two together is a greater

task yet.

Another difficulty in mixed language programming is the lack of mixed language

programming knowledge and experience. Traditionally, software programmers are trained

to program in a single language development environment. They only have experience and

knowledge in single language programming. The documents provided by vendors usually

only provided the information for single language developers not for mixed language

programmers.

In this thesis work, the problems encountered were quite different from the

problems of traditional single language programming. These problems are presented in the

following sections.

5.1 Converted Results

There are two main results of this thesis work. The first result is the interface

package specifications created to interface the existing ObjectSim and ObjectManager
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classes and RDT classes. Since these interface package specifications were successfully

created, the incremental language conversion was feasible in this thesis work. These

interface package specifications are listed in Appendix G.

Another important conversion result of this thesis work is the converted main

program. The original C++ main program in file rdtApplication.cc was converted into an

Ada procedure, named rdtMain in file rdtMain.adb. This result was produced by following

the first four phases of the methodology presented in Chapter 4. From the success of

converting the main program, this thesis work has shown that the methodology is feasible

and practical. Even though the last phase of the methodology was not completed, this

should not be an argument against the feasibility of the methodology because the last phase

is an embellishing effort and it will not affect the execution results. It promotes the quality

of the converted software system.

No other C++ source-code modules were converted into Ada programs. The

reasons why not all RDT modules were converted into Ada95 are listed as follows:

e In some cases, Adabindgen was unable to convert some C++ header files into

Ada package specifications. Regarding GNAT's C++ low-level interface Dr. Comar

stated, "Our goal is not to make the process of interfacing C++ code as easy as possible to

the user. ... we assume that the interfacer has some knowledge about the internals of the

C++ compiler. The kind of interface we provide is more likely to be used by third-party

tools specialized in interface binding generation than by direct users" [Comar].

Adabindgen is the tool that can help programmers use the GNAT's C++ low-level

interface. However, Adabindgen is still under development. The alpha version of
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Adabindgen, used in this thesis work, has some deficiencies. Therefore, some important

C++ header files could not be converted into Ada package specifications by Adabindgen.

Because of this, a lot of time was spent manually creating and debugging the interface

package specifications.

* A debugging tool for mixed language programming was not available. SGI

provided a debugging tool, called "cvd" to help programmers debug their programs.

Originally, this tool was designed for C/C++ programmers. It provided no functions to

help mixed language programmers debug their programs. Programmers can not use cvd to

trace and examine their mixed language programs. It was a painful debugging experience.

Cvd was upgraded recently so that it could debug C/C++ and Ada programs together.

However, it was too late to be of assistance in this thesis effort.

Due to the above reasons, not all RDT modules were converted into Ada95.

Appendix H lists all RDT source-code modules. This gives programmers a work-list to

know how many modules need to be converted in the future.

5.2 The Differences between Single and Mixed Language Programming

In typical single language programming, programming errors usually involve

syntax and semantics errors. Unlike single language programming, mixed language

programming involves less time on debugging syntax and semantics errors. Basically,

doing language syntax conversion is not difficult. Also, it is not necessary to understand

the details of software systems and then fix semantics errors because the original software

has been verified and functions well. In incremental language conversion, interface

pragmas are used to interface the existing code. Using these interface pragmas is not
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difficult and the existing code has been verified before. Therefore, for mixed language

programming, less time is spent fixing semantics errors, but the unresolved linking

symbols and run-time exception errors take most of the time.

5.3 Linking Problems

Many problems occur in the linking phase and during run-time. After the third

phase of the incremental language conversion method presented in Chapter 4, mixed

language development proceeded. At this time, many linking problems occurred. In single

language programming, debugging information from the compiler aids in fixing syntax

errors. Usually, compilers provides the information that indicates which line has the syntax

error and the reasoning. Unlike compilers, linkers usually only show the names of

unresolved symbols without other detailed information. Therefore, it is necessary to

manually find the object file modules which define the unresolved symbols.

The main problem in the linking phase is to solve unresolved symbols. The causes

of unresolved symbols are difficult to identify. Some causes are summarized in the

following subsections.

5.3.1 Incorrect Manually Mangled Names

The most probable cause of unresolved symbols is that incorrect manually mangled

names are provided, and are used to interface the C++ functions or variables from Ada

programs. In GNAT's C++ low-level interface capabilities, the key to interfacing C++

from Ada95 is to use low-level link symbols. These link symbols are supposed to be

provided by an automatic tool for interfacing C++ code from Ada95. SGI's Adabindgen is
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the tool used to achieve this interface requirement. However, Adabindgen is only an

unpublished product and still under development. Some deficiencies of Adabindgen are

listed in Appendix F. In some cases during this thesis work, it did not correctly convert the

C++ header files into Ada package specifications. This can also lead to human error in

finding the correct manually mangled name. Therefore, some unresolved symbols

frequently appear.

In most cases during this thesis work, the linker only gave the link names of some

unresolved linker symbols. Not much information was provided to solve the unresolved

symbols. The way to solve unresolved symbols is to locate the unresolved symbols by

using nm command to thoroughly search among object files. Then check if the manually

mangled name is correct. If it is not correct, then it must be replaced by the correct name.

The linker usually cannot provide any information about this, so other tools must be used.

For example, grep command can be used to search and locate where the objects were

interfaced and nm command can be used to examine the manually mangled names. The

compiler and linker provide little assistance. Experience is the most important factor in

solving these kinds of problems.

5.3.2 System Libraries

If the unresolved symbols are not related to any objects of the programs, the cause

of these unresolved symbols may be that some system-provided libraries are not linked

properly. In traditional single language software development processes, only one

language linker is used to link all separately-compiled software modules. However, there

are two linkers that can be chosen in mixed language programming. The decision must be
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made as to which linker should be chosen to link all mixed language modules. However,

not much information is documented to assist in this decision. According to the experience

of this work, the C++ linker, ld, usually is the correct linker for interfacing C++ code from

Ada programs. An incorrect choice of linker may not only cause unresolved symbols in the

linking phase, but also may cause exception errors during run-time. This exception error

problem will be presented in Section 5.4.

Even if the correct linker has been chosen, unresolved system library symbols may

still appear during the linking phase. This is because the system libraries may not be linked

together with the object files. In the single language development case, the language linker

usually will automatically refer to some default system libraries without explicit command

options when all separately compiled software modules are linked together. However, in

mixed language software development, the chosen linker may not know the other

language's system libraries. Therefore, it cannot automatically link another linker's

libraries. It is necessary to explicitly tell the chosen linker where another language's

system-provided libraries are. Unfortunately, this kind of information is not usually

documented for software developers. Since programmers may be not familiar with the

unresolved symbols defined by system-provided libraries, solving these unresolved

symbols is difficult for novice programmers. These kinds of problems must be fixed in a

trial-and-error fashion. Thorough searching in all system libraries may be needed to

identify which libraries define the unresolved symbols.
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5.3.3 Incorrect Linking Sequence

Incorrect linking sequences of libraries or object files may also cause unresolved

symbols. During this research effort, different linking sequences of libraries or object files

were shown to have different link results. Some specific incorrect linking sequences

caused unresolved symbols. The reason for this is still unclear. This problem may be

related to the internal behavior of the linker, however, no documents have been found to

substantiate this theory. Fortunately, the original Makefile provided the correct linking

sequence of the object files and libraries.

5.4 Run-time Problems

The main concern in the run-time phase is exception error problems. Debugging

the exception error presents another difficulty in this thesis work. GNAT provides good

error messages for syntax errors. However, for debugging exception errors, GNAT only

provides minimal help. Two exception errors, StorageError and Constraint_Error,

frequently appeared in this thesis work. The possible causes and solutions are summarized

in the following subsections.

5.4.1 StorageError

A Storage-Error exception can be raised by elaboration of a declaration and also by

a subprogram call if many subprograms are still in progress when a new one is called

[Cohen96]. A Storage-Error shows up when the program runs out of memory in the pure

Ada system where all code is written in Ada. In non-pure Ada systems in which the code is

written in Ada and another language, it is probably due to some bad address generating a
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segmentation violation [Comar96]. However, identifying the exact location in code where

the segmentation violation occurs is difficult. According to this thesis work experience,

three possibilities for the cause of Storage-Error exist: incorrect elaboration, uninitiated

pointer, and the wrong choice of linker.

Incorrect elaboration has the highest possibility for causing Storage-Error and

ConstraintError. From the experience of this thesis work, the most likely reason for a

Storage-Error is that at least one declaration is not correctly elaborated. C++ does not have

elaboration, but Ada does. "In Ada, declarations are processed as they are encountered

during program execution. A declaration may refer to values computed earlier in the

execution. The act of processing a declaration is called elaboration" [Cohen96]. When

StorageError is raised, it is difficult to locate which declaration was not properly

elaborated and where the declaration is.

Most of Storage-Error problems were caused by the declarations in the created

interface package specifications because the declarations were not elaborated correctly.

This often caused the StorageError to be raised before the first execution statement

executed. Before execution of an Ada main subprogram, all compilation units directly or

indirectly used by the main program are elaborated [Cohen96]. Therefore, each with

clause within the main program starts a dependency trace, which is a sequence of the

hierarchically referred packages. Packages in the each dependency trace will be elaborated

in order. Storage-Error will be raised whenever a package in any one dependency trace

cannot be correctly elaborated. Therefore, it is difficult to identify which package caused

Storage-Error.
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The strategy to solve StorageError exceptions is to first narrow down the problem

range and then check the declarations within the package to locate the exact cause of

elaboration error. One way to narrow down the problem range is to identify which one

interface package specification causes the problem. Then each declaration in the identified

package can be examined to find out which declarations were wrong.

To identify which package causes StorageError, the system dependency diagram is

helpful. A system dependency diagram is the diagram which describes the dependencies

among software modules in the system. In a system dependency diagram, each node

represents a software module and each directed edge indicates the referring relationship.

The system dependency diagram provides all dependency traces and the packages in the

trace. This can assist in understanding the sequences of package elaboration, so all directly

or indirectly referred packages can be traced down.

However, this method only helps the problem range to be narrowed down to a

single package. The real cause of StorageError has not yet been identified. "Elaboration

of a package declaration entails elaborating all the declarations within it, in order"

[Cohen96]. It is necessary to trace down which declaration(s) caused the StorageError.

The second possible cause of Storage-Error is that a pointer is not correctly

initialized. Pointers should be initialized to an address, 0, or NULL either when they are

declared or in an assignment statement [Deitel94]. In pure C++ software systems,

sometimes, an uninitiated pointer may not cause any run-time error. However, this does

not mean that there will not be any run-time errors in mixed language programming. An

uninitiated pointer is a dangerous time bomb in programs because it may point to an
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address out of the users program segment and then cause the Ada run-time system to raise

Storage-Error.

The third possible cause of Storage-Error is the wrong choice of linker. The wrong

choice of linker may not only cause unresolved symbols in the linking phase (see Section

5.2.2), but may also cause Storage-Error in run-time. This is a very difficult problem to

debug. After programs have been compiled and linked without showing any error

messages, programmers usually will not think anything is wrong in the linking phase

because Storage-Error was raised during run-time. However, as was discovered during

this thesis work, it is possible to successfully link all programs by using the wrong linker,

but problems may occur later in the run-time phase. The natural response in such a

sitiulation is to examine the source code and try to figure out why StorageError was raised.

Because the linker did not show any error messages, it is unlikely that the linker would be

suspected. Appendix E presents such a case which occurred in this thesis work. In this

case, programs were compiled and linked without any error messages. However,

Storage-Error was still raised during run-time. Finally, after receiving expert assistance

from Dr. Cyrille Comar of AdaCore, Inc., the programs were successfully built by the

correct linker using the proper building procedures shown in Appendix E.

5.4.2 ConstraintError

ConstraintError is another common run-time error that occured during this thesis

work. Cohen summarized many causes of ConstraintError in [Cohen96]. However, in

this thesis work, the two most probable causes of Constraint_Error were (1) elaboration

errors and (2) the mismatch between the converted Ada tagged record with the original C++
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class declaration. These two causes usually appeared in the created Ada interface package

specifications. If Constraint_Error is raised, the interface package specifications should be

the first place examined.

Incorrect elaboration may also cause Constraint_Error. Section 5.3.1 stated that

incorrect elaboration may cause StorageError. Additionally, it may also cause

ConstraintError. Therefore, the same strategy presented in Section 5.3.1 is also useful in

solving Constraint_Error.

During this thesis effort, most ConstraintErrors occurred because the original C++

class failed to be correctly converted into the Ada tagged type. Two common errors in this

area were (1) the types of the C++ class data attributes were not correctly converted into the

parallel data types in the corresponding Ada tagged record type or (2) a C++ class without

any virtual function was converted to an Ada tagged type. Because both errors may cause

the memory layout of the C++ class to be different from the Ada tagged type's memory

layout, Constraint_Error may be raised in run-time.

A C++ class is converted a tagged type and data attributes of the class are converted

the components of the tagged type. If the type of any one data attribute within the C++ class

was not correctly converted into its parallel data type within the Ada tagged type, the C++

class is incompatible with the converted Ada tagged type. Section 3.1.4 states that only

safe types can cross language boundaries. In GNAT, only the types listed in Table 8 can be

viewed as safe types if they are correctly converted into the parallel types, because GNAT

will guarantee the correspondence between Ada types and the parallel data types in C/C++

[SGI]. Therefore, if the type of any one data attribute within the C++ class was not
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correctly converted its parallel data type within the Ada tagged record type, the C++ class

becomes an unsafe type to cross language boundaries. Therefore, when the incompatible

parallel-typed component of the Ada tagged record is assigned, the Ada run-time system

may detect that the assigned value cannot fit the type of the mismatched component and

will raise ConstraintError.

In GNAT's C++ low-level interface capabilities, only a C++ class having at least

one virtual function should be equally converted to an Ada tagged type. Otherwise, the

memory layout of the Ada tagged type will be different than the memory layout of the

original C++ class. This is because a C++ class having no virtual functions does not have a

virtual table to associate with but an Ada tagged type does. Virtual table is an internal table

created by the compiler that contains the addresses of the virtual member functions. The

dynamic dispatching capability, one of the object-oriented programming (OOP) features, is

achieved by using this table. The detailed function of virtual tables is beyond the scope of

this thesis.
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6 Conclusion and Future Study

6.1 Accomplishments

This thesis presented an incremental language conversion method for converting

C++ programs into Ada95 programs. The methodology consisted of five phases: (1)

reorganizing the software application, (2) breaking the mutual dependencies, (3) creating

necessary package specifications to interface the existing C++ classes, (4) converting C++

code into Ada programs, and (5) embellishment. This methodology has the following

advantages:

1. The converted programs have more Ada language advantages than "C++ style" Ada

programs. Simply translatting C++ programs into Ada may not add any value to the

programs. This methodology not only correctly converts C++ applications into Ada95

programs, but also takes advantage of many of Ada's language features which support good

software engineering principles. This methodology outlines a way to convert the original

C++ application into a well-structured Ada program such that the converted Ada program

has several advantages which did not exist in the original C++ application.

2. Detailed application knowledge is not necessary. Only a high level knowledge of the

software system is needed. Software engineers do not need to do reengineering work nor

understand the details of the software system. According to the experiences of this thesis

work, language conversion can be accomplished without understanding the details of the

software system.
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3. Incremental conversion appears to be a more straight forward process than non-

incremental conversion. Following the phases of this methodology, software modules can

be converted one at a time. Therefore, it is easier to debug and verify the functions of each

module than for an entire system. Also, the results after each phase are verifiable. In this

methodology, immediate results can always be obtained. So, the risks of language

conversion can be reduced as much as possible.

Another important accomplishment of this thesis work was that the RDT main

program was successfully converted into Ada95. The real value of this accomplishment is

not just the Ada source code of the main program, but that the converted RDT main

program has shown that this methodology is feasible and practical. Also, based on the

experience and knowledge learned from converting the RDT main program, it should be

easier to convert other RDT modules.

6.2 Future Study

Although an incremental language conversion methodology has been successfully

developed in this thesis work, some remaining work needs to be done. The following

discussion of future work is broken into three subsections. The first subsection

recommends finishing the conversion of RDT. The second subsection recommends

verifying all created ObjectManager and ObjectSim Ada package specifications. The third

subsection recommends to study the other unaddressed C++ features.
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6.2.1 Convert All RDT Modules

Since only the RDT main program has been converted into Ada95, the first

recommendation for future study is to convert the other RDT C++ modules. Appendix H

lists all RDT source-code modules. This gives programmers a work-list to know how many

modules need to be converted in the future. After the entire RDT is converted into Ada95,

the original RDT and the converted RDT should be compared in the areas of performance,

maintainability, reliability, and size.

Also, more conversion experience from C++ to Ada should be pursued.

Knowledge obtained from this effort could produce a guidebook to make future conversion

work easier. As programmers gain more experience in the conversion process they will

learn and understand the subtle differences between C++ and Ada95.

6.2.2 Verify the Created Ada Package Specifications

In order to interface ObjectSim and ObjectManager, some C++ header files used by

RDT were converted into Ada package specifications. However, other C++ header files,

which were not used by RDT, have not been converted into Ada package specifications yet.

For future projects, other header files should be converted into Ada package specifications.

Therefore, a complete interface for Ada programmers to interface ObjectSim and

ObjectManager should be undertaken.

Also, some created Ada package specifications have not been verified yet, because

they are not used by RDT. Some potential problems may occur when they are used to

interface ObjectSim and ObjectManager. In ObjectSim and ObjectManger header files,
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only the header files used by RDT have been verified. These package specifications are

listed in Appendix G.

6.2.3 Unaddressed C++ Features

Some C++ features were not addressed in this thesis work because they were either

not used in RDT or they are used in RDT modules that were not converted during this

effort. Therefore, the methods to convert these C++ features into Ada were not included in

this thesis. Unaddressed C++ features are templates, friend classes, exception handling,

file processing, and stream I/0. These C++ features should be studied in the future so the

methods to achieve the same effects in Ada95 can be found.
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Appendix A. The RDT Modules and Their Sizes

This appendix lists the major modules of RDT. Some C code modules which are

used to display forms and deal with user interfaces are not included in this section because

they were not converted into Ada in this thesis work. Also some AFIT developed libraries,

which are for other projects not only for RDT, are not listed in this section.

Table A- 1. RDT modules and their sizes

File Name Size2  Classes Functions
(LOC)

rdtColorFunctions 600+23' buildColorTable
setRDTColors
getGraphicsConfig
saveColors
restorColors
resetColorTable
buildMsnColorTable
getMsnColorlndex

rdtConfig 140+27 setConfiguration
quitVersionCb
showlnfoCb
configureViewsCb
showErrorMessage

rdtErrorMessage 98+67 quitErrorMessage
show ErrorMessage

2 The size of a software module inclues the comments in the source code.

3 The first number indicates how many lines in the source code file and the second number indicates how
many lines in the header file.
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Table A-i. RDT modules and their sizes (Cont 'd)

File Name Size Classes Functions
(LOC)

rdtController 2280+68 accept3DAC
acceptAireraft
acceptAircraftColumn
acceptPairData
activateKeypad
deactivateKeyPad
DeadReckoningCb
eraseExerciseCb
expandPositionerCb
hideCallSignsCb
hideFlightPathsCb
hideGeoLabelsCb
hideLowActivityCb
hide WeaponCb
keypadEnterCb
loadACStateFormnCb
loadCentroidFormCb
pageDataViewCb
printShStateCb
quitControlFormCb
quitExpandPlanViewCb
quitStartFormCb
refreshExerCb
refreshSummaryCb
resetAircraftColumnCb
resetPairDataViewCb
select3DACCb
select3DViewCb
selectAircraftCb
selectDataViewCb
selectPairViewCb
setAircraftColumnCb
setCentHdgCb
setEngineerDataViewCb

____________ ____________________ 1 setEventLoggingCb
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Table A-]. RDT modules and their sizes (Cont'd)

File Name Size Classes Functions
(LOC) _______

rdtApplication 2203+53 RDT Terrian public: configure channel
_________ ______RDT View draw

RDTFormsView public:
init-draw
pre-draw
draw

RDT ViewPlayer public:
getScaleFactor
drawWpnEvents

CentroidPlayer public:
init
propogate
draw
set View
findMidpoint
getXYDistance

PlanViewPlayer public:
init
propogate
draw
mnit draw

TetherPlayer public:
unit
propogate
draw
moveDetach
OldTime

CockpitPlayer public:
init
propogate

_________draw

RDT _App mnit -simn
unit-draw-thread
pre-draw
post-draw
propogate
showDataViews

_____________ _______ ______________ showPairData
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Table A-i. RDT modules and their sizes (Cont'd)

File Name Size Classes Functions
(LOC) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

rdtCentroid 213+15 selectCentroidAircraftCb
acceptCentroidAircraft
setCentroidPlayerCb
exitCentroidFormCb
resetCentroidACCb

rdtEventManager 3 75±42 RDTEventManager public:
update state
initialize

_______________ ________________________alloc shared
rdtCirQueue 188+50 CircleQueue public:

init
reset
addQueue
startlterate
iterateBackward
printQueue

rdtEventQueue 238+7 1 EventQueue public:
initialize
addQueue
startlterate

rdtGeoRefMgr 1115+92 GeoRetMangerpulc

convertLLtoXYZ
showData.
non-public:
Geodetic-toGeocentric

________Geocentric to Geodetic
rdtHelp 178+24 load-it

startHelpCb
quitHelpCb
showHelpCb

rdtUtilities 694+3 0 computePairData
validatePairDataAC
validateDataViewAC
calcPairlnfo
drawPlayerlnfo

_______________________buildType able
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Table A-i. RDT modules and their sizes (Cant'd)

File Name Size Classes Functions
(LOC) _______________________

rdtUserlnterface 1309+44 UserInterface public:
initialize
assignShared
delayUntil
readForms
showData
showPairs

______ _____________shutDown

rdtNetManager 5 10±75 RDTNetManager public:
get_net
update
allocplayers
init
protected:
alloc shared

rdtREU 729+233 rdt_-Round_- public:
Earth Utils round-flat-xforms

euler ang-les-from-matrix
eeng__euler -angles from-matrix
matrix-from-euler-angles
singularityjmatnix -from -euler -angles
eulertopfrhpr
pfiri_to -eulerhpr
md-euler-to-flat
singularity_md,_euler -to -flat
flat-euler-to-md
singularity_flat_euler-to-md
mdpos -to -flat
flatpos -to md
md vec to flat
flat vec to md
alt-msl
ECI toECCF
ECCF toECI
reference -frame-mod-fir
reference -frame -mod-rtf
core-segment
lat-long from,_xyz
private:
mount-flat-xforms 2

____________ ______flatpos to md 2
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Table A-1. RDT modules and their sizes (Cont'd)

File Name Size Classes Functions
(LOC)

rdtSetRLE 498+22 setRLE
drawRLE
pushRLE
popRLE
reDrawRLE

rdtStrFnct 158+20 strinsert
strpartfill

Imy itoa
total
18 11767+995 17 80

=12762
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Appendix B. Reorganized RDT and ObjectSim Software Modules

B.1 Reorganized ObjectSim Software Modules

In this phase (Reorganizing Software Application), the main work for ObjectSim

was to strictly separate implementation from class declaration. Some inline member

functions were moved into their source-code files. The C++ inline member functions are

the member functions whose implementations are in header files. The following work was

done in reorganizing the ObjectSim software system:

1. The inline functions of the Modifier class, init state and reset, were moved

into the new created source-code file, called modifier.cc.

2. The inline function of the Terrain class, clamp, was moved into the new created

source-code file, called terrain.cc.

3. The inline function of the AttachablePlayer class, draw, was moved into the

new created sourced-code file, called attachableplayer.cc.

4. The constructor of the RoundEarthUtils was modified because of one

compiler problem. The old source code was not fully compatible with the current C++

language. Early C++ language allowed memory management for objects to be controlled

by casting a specified type to modify this pointer [Pohl93]. However, new C++ does not

allow programmers to modify this pointer. In this conversion case, there was one class

whose constructor was allocated using dynamic memory allocation. In this way, this

pointer was modified to point to a memory location allocated by memory management.
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This is not allowed in new C++ languages. The solution was simply taking away the

dynamic memory allocation and just using default constructor.

5. The inline functions of the Simulation class, allocshared,

init drawthread, pre-draw and postdraw, were moved into the source-code

file simulation.cc.

B.2 Reorganized RDT Software Modules

The original RDT main program module, rdtApplication, was dissected into several

modules such that each module encapsulated only one C++ class. The original RDT

software module rdtApplication was dissected into nine new created modules:

CentroidPlayer, CockpitPlayer, PlanViewPlayer, TetherPlayer,

rdtApp, rdtTerrain, rdtView, rdtViewPlayer, and rdtFormsView. The file

names were named according to the class names they encapsulated. In the first phase

(Reorganizing Software Application), the original module-wide global variables declared

in file rdtApplication.cc were moved to file rdtApp.h. The other system-wide global

variable declarations were listed in rdtGlobals.h as before. The source-code file of each

class has not been changed at all. Each class still has its original function. The following

table, Table , shows the new created software modules and their sizes.
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Table B-i. New created RDT softwvare modules and their sizes

Module Namne Size (LOC)
CentroidPlayer 33±453=486
CockpitPlayer 23+195=2 18
PlanViewPlayer 17+234=251
TetherPlayer 17+321=338
rdtApp 59+350=409
rdtlerrain 11+17=28
rdtView 14+18=32
rdtViewPlayer 22+204=226
rdtFormsView 19+94=1 13
Total 12101
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Appendix C. Breaking the Mutual Dependencies of ObjectSim

C.A Simplified System Dependencies Diagram

Terrain " Player -

Simulation

- -- Attachable

FtModel ReFmrre Player

Renderer

Figure C-1. The simplified ObjectSim system dependencies diagram

The above diagram, Figure C-i, is the simplified system dependencies diagram 4 of

ObjectSim. There are two directed links remarked by "*". Originally, the header file of

Terrain class did include the header file of View class. However, this inclusion in the

original ObjectSim source code was not needed. Simply removing these two inclusions

without any other change can solve the mutual dependency between Terrain and View.

Therefore, these two inclusions have been taken away.
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There are three loops in this ObjectSim simplified system dependencies diagram:

(1) Simulation -> PfmrRenderer -- Simulation, (2) PfmrRenderer -*

View -+ Pfmr Renderer, and (3) Player -+ PfmrRenderer -- View -+

Attachable_Player -* Player. These three loops were the mutual dependencies in

ObjectSim. The following sections will describe how to break these three mutual

dependencies and the rationale.

C.2 Breaking the First Mutual Dependency

Table C- 1. The mutual dependency between Simulation and Pfinr_Renderer

Simulation Pfmr_Renderer
#include "pfmr renderer.h" #include "simulation.h"

class PfmrRenderer; class PfmrRenderer I

class Simulation { public:

public: void init(Simulation* theapp, .

<< Abstract member function declaractions >>

PfmrRenderer* Renderobj; << Other member function declaration >>

}; }

Table C-i shows how Simulation and PfmrRenderer depend upon each

other. Simulation needs to include Pfmr Renderer because it wants to know the

PfmrRenderer object associated with it. Also PfmrRenderer needs to include

4 This simplified system dependencies does not contain the system libraries header files and some constants
definition header files.
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Simulation because one of its member functions, called init, needs to pass in a

Simulation object. There are two ways to break this mutual dependency: (1) taking off

the association with PfmrRenderer from Simulation or (2) removing the

Simulation parameter of init, which is a member function of PfmrRenderer. It

seems the first one is the better option in this case. After checking the source-code file of

the Pfmr Renderer, shown in Figure C-2, software engineers can find out if the ripple

effects of the second option will scatter over the four member functions of

Pfmr Renderer.

Typedef struct I

Simulation* linkapp;

I shared;
static Shared* Sh;
void PfmrRenderer::init(Simulation* theapp,

int numpipes,
Terrain* theterrain)

Sh->linkedapp = theapp;

Sh->linkedapp->allocshared();

Sh->linkedapp->init sim(;

void PfmrRenderer::render()

Sh->linkedapp->propogate(exitflag);

void DrawChannel( ........

Sh->linkedapp->pre_draw();

Sh->linkedapp->post_draw(;

void Openpipeline( ....)

Sh->linkedapp->initdrawthread();

Figure C- 2. The simplified source-code of Pfmnr_Renderer class
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On the other hand, the first option only needs to remove the attribute from

Simulation to PfmrRenderer. Since there is only one PfmrRenderer object

in the applications of ObjectSim, programmers can declare a application-wide global

variable for PfmrRenderer objects. Doing it this way, Simulation class still can

refer to the PfmrRenderer instead of implementing the association as an attribute.

Actually, most applications of ObjectSim did declare an application-wide global variable to

refer to it. Therefore, the first option will have less ripple effects than the second one. The

only modification is that the inclusion of pfmrrenderer.h in Simulation and the data

attribute, Rendererobj, have been taken off.

Because of this modification, the applications of ObjectSim need be changed to fit

themselves into the modified ObjectSim. All ObjectSim applications need to declare an

application-wide global variable to refer to the PfmrRenderer object. All references

to PfmrRenderer should be done by accessing this global variable instead of indirectly

refering to PfmrRenderer through Simulation.

C.3 Breaking the Second Mutual Dependency

The second mutual dependency is between Pfmr_Renderer and View. Table C-2

shows how this mutual dependency happened. PfmrRenderer needs to include View

because it wants to know which Views are associated with it. On the other hand, View

needs to include PfmrRenderer because it wants to knows the Pfmr_Renderer object

that is associated with it. Assuming that the inclusion of View in PfmrRender is taken

away, the impact is that two member functions, arbitrate and toggleview, need to

be modified and a new mechanism is needed to record all assigned Views.
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Table C- 2. The mutual dependency between view and PfmrRenderer

View Pfmr Renderer
#include "pfmrrenderer.h" #include "view.h"

class View { class PfmrRenderer

public: public:

void arbitrate (View* theview, ... );

<< Abstract member function declarations >> void toggleview(View* theview, ... );

PfmrRenderer* Renderobj;

<< Other member function declarations >>

View** assigned view;

1; }

As in the first mutual dependency, it seems that to remove the View's association

Pfmr Renderer attribute is a better choice. Therefore, the inclusion of

PfmrRenderer in View is removed. The ripple effect of this modification is listed as

follows:

(1) The applications of ObjectSim need to declare an application-wide global

variable to refer to the PfmrRenderer object. Actually, this is not extra

work because it is also necessary to break the first mutual dependency.

(2) Since the Renderobj attribute of the View class has been removed, the

statements in the source code of View that access Renderobj should be

removed. That means lines 12, 14, 24, and 25 in Figure C-3 must be removed.
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1 void View::new view(int desired pipe)
2
3 (*MyPipe) = desired pipe;
4 float far = 475000.0f;
5 scene = pfNewScene(;
6 nullroot = pfNewGroup();
7 My Model = new FltModel();
8 My Model->RotDCS = pfNewDCS(;
9 My Model->root = nullroot;
10 pfAddChild(MyModel->RotDCS, MyModel->root);
11 pfAddChild(scene, MyModel->RotDCS);
12 Renderobj->arbitrate (this,desired_pipe);

13 pfChanScene (chan, scene);

14 Renderobj->terrain->configurechannel (chan);

15 pfChanNearFar(chan, 0.1f, far);
16 pfChanFOV(chan, 45.0f, -l.0f);
17 terraintrans pfNewDCS();
18 playertrans = pfNewDCS();
19 pfAddChild(scene,terraintrans);
20 pfAddChild(scene,playertrans);
21 pfChanTravMask(chan, PFTRAV_DRAW, (*curmask));
22 chanmask = (*curmask);
23 (*curmask) = (*curmask)<<l;

24 pfAddChild (playertrans, Renderobj ->players);
25 pfAddChild (terraintrans, Renderobj ->terrain>root);
26 }

Figure C-3. Program 6: The member function of the View class that involves the second mutual dependency

The second ripple effect is a bigger problem in breaking the second mutual

dependency. Because of removing lines 12, 14, 24, and 25 in Figure C-3, ObjectSim's

original execution has been changed. The functions at these lines must be recovered

somewhere in the system. The following paragraphs present a method to minimize the

ripple effect for breaking this mutual dependency.

The way to break the mutual dependency is to remove any one of the links in the

mutual dependency cycle. In order to decide which directed link should be removed, all

dependencies involved in the mutual dependency should be carefully examined. Each

dependency implies a header file inclusion. In order to remove a header file, the reason to

include the header file must be eliminated. Therefore, all statements which result in the
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inclusion should be carefully examined. The statements that result in the inclusion are

dependency points (DPs). When a module involves a mutual dependency, there exists at

least one DP. If some engineering work can be done to remove all DPs in the module, then

the inclusion, which involves the mutual dependency, can be removed. Then the mutual

dependency can be broken. In the second mutual dependency, the statements referring to

the Renderobj are DPs because the inclusion of PfmrRenderer in View can be

simply removed if these statements can be removed from View. Therefore, lines 12, 14,

24, and 25 in Figure C-3 are DPs.

After identifying the DPs, resequencing the statements may be needed. A program

works both because correct statements have been chosen to achieve the expected results

and the execution sequences of the statements are correct. The new-view member

function of View consists of six parts: (1) line 1 - line 11, (2) line 12, (3) line 13, (4) line

14, (5) line 15 - line 23, and (6) line 24 - 25. The DPs partition new-view into several

pieces of code. In the other word, the entire result of newview can be achieved by calling

six functions and each function is to execute the exact code of each part. Before,

ObjectSim applications only needed to call newview once. However, if only removing

DPs (line 12, 14, 24, and 25) without any resequencing, then these six different functions

corresponding to each part must be called in sequence. That means the original coherent

member function would became six trivial calls in sequence.

In order to keep as much of the original coherence of new-view as possible,

resequencing and regrouping all statements of new view is needed to reduce the number

of partitions. To achieve this goal, all DPs must be moved as close to each other as

possible. A statement block (SB) is an ordered set of statements such that the first
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statement in a SB is right after a DP and the last statement in a SB is right before the next

DP. For example, in Figure C-3, the statement 13 is the first SB and the statements from 15

to 23 are the second SB. Note: the block that contains statement 3 to 11 is not a SB because

the first line of the block is not a DP.

In order to correctly regroup the statements of newview into less partitioned parts,

Figure C-4 presents a method to follow. The overall goal of this method is to move the DPs

to be as close to each other as possible. These DP blocks can be replaced by a new block

which function as the original functions of the DP blocks. Then the application of

ObjectSim can call this new block to recover the lost functions performed by the DP block.

The resequenced results after following this method is shown in Figure C-5. This means

the original newview can be also written as Figure C-5 without any function loss.

Therefore, newview can be decomposed into four parts. The first part, line 1 - 20,

remains in new-view. The second and fourth part are two blocks of DPs, so these two

parts must be removed to somewhere else in the applicatiion of ObjectSim to break the

mutual dependency. The third part is moved to a newly created member function of Vi ew,

named setup_drawing.
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Moving rule:
When a statement is moved to another block, it is appended to the top or bottom of

that block, depending on its relative location to the statement. For example, if the statement
is moved to a block above it, it is appended to the bottom of that block. If it is moved to a
block below it, it is appended to the top of that block.

Procedure:
(1) Identify the DPs.
(2) Starting from the first SB,

(2.1) Starting from the last statement in the SB, if this statement can be moved to the
next block then move it. Otherwise leave it in the same position.

(2.2) Using the bottom-up approach, choose the next statement and repeat (2.1)
until all statements in the SB have been checked.

(3) Go to the next SB and repeat (2) until all SBs have been processed.
(4) Starting from the last SB,

(4.1) Starting from the first statement in the SB, if this statement can be moved to
the previous block then move it. Otherwise leave it in the same position.

(4.2) Using the top-down approach, choose the next statement and repeat (4.1)
until all statements in the SB have been checked.

(5) Go to the previous SB and repeat (4) until all SBs have been processed.

Figure C-4. A method to resequence the original a function and keep its coherence as possible as it can

1 void View::newview(int desired-pipe)
2 f
3 (*MyPipe) = desired pipe;
4 float far = 475000.6f;
5 scene = pfNewSceneo;
6 nullroot = pfNewGroup(;
7 MyModel = new Flt_Model();
8 MyModel->RotDCS = pfNewDCS();
9 MyModel->root = nullroot;
10 pfAddChild(MyModel->RotDCS, MyModel->root);
11 pfAddChild(scene, MyModel->RotDCS);
17 terraintrans pfNewDCS(;
18 playertrans = pfNewDCS(;
19 pfAddChild(scene,terraintrans);
20 pfAddChild(scene,playertrans);

12 Renderobj ->arbitrate (this, desired_pipe);
14 Renderobj->terrain->configurechannel (chan);

13 pfChanScene (chan, scene);
15 pfChanNearFar(chan, 0.1f, far);
16 pfChanFOV(chan, 45.0f, -l.0f);
21 pfChanTravMask(chan, PFTRAVDRAW, (*curmask));
22 chanmask = (*curmask);
23 (*curmask) = (*curmask)<<l

24 pfAddChild(playertrans,Renderobj->players);
25 pfAddChild (terraintrans,Renderobj->terrain->root);
26 1

Figure C-5. The resequenced result of new view
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The ripple effect of this modification is that the applications of ObjectSim need to

add the following piece of code whenever they call new-view:

Renderobj->arbitrate(this,desiredpipe);
Renderobj->terrain->configure channel(chan);
setup drawing();
pfAddChild(playertrans, Renderobj->players);
pfAddChild(terraintrans,Renderobj->terrain->root);

where Renderobj is the application-wide global variable used to refer the

PfmrRenderer. For example, the RDT main program in file rdtApplication.cc should be

modified like the program shown in Figure C-6.

main (int argc, char *argv[])

LeftView.new view(O);
// New code for recovering the lost function because of
II breaking the mutual dependency.
Renderer.arbitrate(&LeftView, 0);
Renderer.terrain->configurechannel (LeftView.chan);
pfAddChild(LeftView.playertrans, Renderer.players);
pfAddChild(LeftView.terraintrans, Renderer.terrain->root);
LeftView.setup drawing( ;

rightView.new view(O);
I/ New code for recovering the lost function because of
// breaking the mutual dependency.
Renderer.arbitrate(&RightView, 0);
Renderer.terrain->configure channel (RightView.chan);
pfAddChild(RightView.playertrans, Renderer.players);
pfAddChild(RightView.terraintrans, Renderer.terrain->root);
RightView.setup drawing();

Figure C-6. The necessary change of RDT after breaking the second mutual dependency

Another modification to ObjectSim for breaking this mutual dependency is the

derived class of View, called Multiview. Since the PfmrRenderer attribute has

been removed from View, its child class, Multiview, is no longer able to refer this

attribute. In the source-code file of Multiview, one member function, called
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drawmods, did refer to this attribute. All references to PfmrRenderer in the

source-code file of Multiview class has been removed. As a result of these

modifications, ObjectSim applications need to call setdrawmode(OVERLAYSCREEN)

before Multiview: :draw-mods is called and then call setdrawmode (NORMAL)

after Multiview: : draw mods is called. Since RDT did not refer to the Multiview

class, RDT was not modified.

In breaking the second mutual dependency, one lesson is learned. The major

difficulty in minimizing the ripple effect is to assure that the relative sequences of the

statement and DPs are independent. In some cases, a statement can be moved to any

position in a module without any functional change, but other statements must be placed

before or after the specified DPs. If software engineers have enough knowledge about the

exact sequences of the statements and the DPs, they can rearrange and group the statements

as a block and decompose the whole member function into several subfunctions. However,

if there is insufficient knowledge about the relative sequencing between the statements and

DPs, Figure C-4 presents a way to decide the relative sequence of between statements and

DPs and then to minimize the ripple effect while breaking mutual dependencies. In Figure

C-4, (2.1) - (2.2) and (4.1) - (4.2) are the heuristic steps to move DPs closer to each other.

C. 4 Breaking the Third Mutual Dependency

Referring to Figure C-i, the third mutual dependency is a big loop: Player -+

PfmrRenderer -> View -> AttachablePlayer -> Player. Based on the

same principles and same reasons as was used to break the first mutual dependency, the

inclusion of PfmrRenderer in the Player class and the associated
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Pfmr Renderer attribute was removed. Player included Pfmr Renderer because

the header file of Player declared an attribute to associate the PfmrRenderer.

However, the source-code file of Player never referred to the Pfmr Renderer.

Therefore, only the PfmrRenderer attribute in the header file of Player was

removed. No change was made in the source-code file of Player.
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Appendix D. The Calling Dependency Diagrams of RDT
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Appendix E. A StorageError Case: Choosing the Wrong Linker

This appendix presents a case where Storage-Error is raised because of choosing

the wrong linker. The object model of this example is shown in Figure E-1. The

implementations of C 1 a s sA, C 1 a s s_AA, and C 1 a s s_B are presented in Figure E-2,

Figure E-3, and Figure E-4, respectively. In Figure E-2, the constructor of ClassA

initializes a val to 1111. In Figure E-3, Class AA is a child class of ClassA and

a-val is initialized to 7777. In Figure E-4, ClassB has an association with ClassA.

This association is implemented as a polymorphic member function of Cl a s s B, named

B_func_1, which has a class pointer parameter. This means the parameter could be an

object of the Class A or any children of Class-A. Figure E-5 shows the main program

and its execution results. In the main programs, when AAPtr is allocated, its a val is

initialized to 7777 not 1111 (See the constructor of ClassAA in Figure E-3). The

right-hand side of Figure E-5 shows the execution results which prove that the

polymorphism of B func 1 was achieved.

B A

EA A

Figure E- 1. The object-oriented model of the programs to interface a C++ polymorphic function
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// class A.h //class A.cc
#ifndef - classA #include "class A.h"
#define __class A ClassA::ClassA()
class ClassA j
public: a val = 1111;

Class AO;
int a val;
virtual a funl()=O;
};
#endif

Figure E- 2. The header file and source-code file of ClassA

//class AA.h //class AA.cc
#include "class A.h" #include "class AA.h"
class ClassA; Class AA::ClassAA(void)
class Class-AA : public ClassA aa val = 2222;

a val 7777;
public: I
int aa val; Class AA::a fun l(void)

Class AA::ClassAA(); a val= 8888;
a fun-l();

Figure E- 3. The headerfile and source-code file of ClassAA

//class B.h //class B.cc
#ifndef class B # include "class B.h"
#define class B # include <iostream.h>
#include "class -A.h" void ClassB::B func l(ClassA* A)
class Class A; I
class Class B { cout << "This is B func l\n";
public: cout << "B->A.a val =IF

void B func l(Class A* A); }; << (*A).aval << "\n";
#endif }

Figure E- 4. 77w headerfile and source-codefile of ClassB

// cpp main.cc This is main program
#include "class AA.h" Calling B func 1
#include "class B.h" This is B func 1
#include <iostream.h> B->A.a vaf=7777
void main() { End of the main program
ClassB B;
Class -AA* AAPtr;
cout << "This is main program\n";
AA Ptr = new Class AA();
cout << "Calling B func l\n";
B.B func I(AA Ptr);
cout << "tnd of the main program\n";

Figure E- 5. The C++ main program and its execution results
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In order to interface these three existing C++ classes, three Ada package

specifications were created: classA h, classAA_h, and classB h which are shown in

Figure E-7, Figure E-8, and Figure-9 respectively. A non-OOP programmer would

produce a profile of B func_1 that would look like as follow:

procedure B func_1 (P1: Class B; A: Class APtr);

However, this does not work in the OOP environment, because directly converting the type

of the parameter A into ClassAPtr will not achieve the polymorphism result. Passing

a Class AA Ptr parameter will not be allowed in Ada if B func_1 is declared as

above. Therefore, in order to achieve the polymorphism of the B_func_l, the type of the

parameter A should be declared as Class A ClassWide Ptr. The profile of

B func_1 should look as follows:

procedureB_funcl(Pl: ClassB; A:classAClassWidePtr);

where ClassAClassWidePtr is declared as the following:

type ClassAClassWidePtr is access all ClassA'Class;

Finally, the C++ main program, shown in Figure E-5, is converted to an Ada procedure,

called ex_main and shown in Figure E-9. In theory, the same result as the right-hand side

of Figure E-5 is expected. However, executing ex main raised Storage-Error when

B func_1 was called. The result is shown as follows:

This is main program
Calling B func 1
raised Storage-Error
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--class a h.ads
with Interfaces.CPP;
use Interfaces.CPP;
package classA _h is

type Class A is abstract tagged
record

a val Integer;
vptr Interfaces.CPP.VtablePtr;

end record;
pragma CPP Class (Entity => Class A);
pragma CPP-Vtable (Entity=>Class_A,Vtable Ptr=>vptr,EntryCount=>l);
type Class-A ClassWide Ptr is access all ClassA'class;
type Class A Ptr is access all ClassA;
function Constructor return Class A'Class;
pragma CPPConstructor (Entity => Constructor);
pragma Import (C, Constructor, "Class A", " ct 7ClassAFv");
function a fun 1 (This : ClassA) return Integer;
pragma CPP Virtual(Entity=>a_fun l,Vtable Ptr:>vptr,EntryCount=>l);
pragma Import (C, afun_1, "afun l", "a_fun_1 7ClassAFv");

end class A h;

Figure E- 6. The interface package specfication of ClassA

-- class aa h.ads
with class a h;
use class a h;
package class AA h is
type Class AA is new ClassA with

record
aa val : Integer;

end record;
pragma CPPClass (Entity => Class AA);

type Class -AA Ptr is access all ClassAA;
function Constructor return Class AA'Class;
pragma CPP Constructor (Entity => Constructor);
pragma Import (C, Constructor, "ClassAA", " ct 8ClassAAFv");

end class AA h;

Figure E- 7. The interface package specification of ClassAA

-- class b h.ads
with class_A_h;
use class A h;
package class B h is

type Class B is null record;
procedure B func 1 (Pl : Class B; A : ClassAClassWide Ptr);
pragma Import(C,B-func 1, "B func l","B func_1 7ClassBFP7Class A");

end class B h;

Figure E- 8. The interface package specification of ClassB
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-- ex main.adb
with class b h;
use class b h;
with class aa h;
use class aa h;
with classa h;
use class a h;with TextIO;
use Text _O;
procedure ex main is

B : Class B;
AAptr: ClassAAPtr;

begin
putline ("This is main program");
AA ptr := new ClassAA;
put line("Calling B func 1");
class b h.B func_1(B, ClassAClassWidePtr(AAptr));
putline("ENd of the main program");

end ex main;

Figure E- 9. The converted Ada main program

After receiving help from Dr. Comar at New York University, the converted Ada

main program, named ex-main, correctly works now. The real problem is not related to

the programs, but to the wrong choice of linker. Figure E-10 shows the original building

steps and Figure E- 1 shows the correct building steps. The only difference is in the linker.

In the original building steps, gnatlink was chosen to link the programs (In Figure E-10,

gnatbl command means the binding and linking of GNAT.). The second time, the CC

linker was used in the correct building steps.

The bottom line is that the wrong linker may cause StorageError at run-time even

though the linker may not show any error messages. Therefore, programmers may need to

try another linker if they cannot find anything wrong with the programs.
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% CC -c -g classA.cc
% CC -c -g classAA.cc
% CC -c -g classB.cc
% gcc -c -g class-a-h.ads
% gcc -c -g class-aa-h.ads
% gcc -c -g class-b-h.ads
% gcc -c -g ex-main.adb
% gnatbl -v ex-main.ali -o AdaMamn classA.o classAA.o classB.o \

-L/usr/lib -L/usr/local/lib -Ignat -4C
Figure E- 10. The original building procedure for the example programs shown in Figure E-%-E-9

% CC -c -g classA.cc
% CC -c -g classAA.cc
% CC -c -g classB.cc
% gcc -c -g class-a-h.ads
% gcc -c -g class-aa-h.ads
% gcc -c -g class-b-h.ads
% gnatbind -x ex-main.ali
% gcc -c b-ex-main.c
% CC -o AdaMain classA.o classAA.o classB.o class-a-h.o class -aa. h.o\

class-b-h.o ex-mamno b-ex main.o -L/usr/lib -L/usr/local/lib -lgnat\
-L/ usr/ local/ b/ gcc-ib/ mips-sgi-iix5.3/ 2.7.2 -lgcc

Figure E- 11. The correct building procedure for the example programs shown in Figure E-2'-E-9
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Appendix F. Deficiencies of Adabindgen

This appendix lists the deficiencies of Adabindgen. The first four points are

extracted from [SG196] and the others points are obtained during this thesis effort.

1. The original C/C++ comments are excluded from the converted Ada package

specification.

2. In certain circumstances, Hex or Octal numeric literals are represented in

decimal in the Ada package specification.

3. Most C macros with parametera are not represented in the Ada specification.

4. C unions are currently converted into byte arrays in Ada. They will be

converted into a discriminated records with a dummy discriminant.

5. The inline functions cannot be correctly converted into Ada subprograms.

6. Each #include directive is supposed to be converted into a with clause

which refers to the converted package specification from the included header

file. However, Adabindgen may not convert each #include directive to a

with clause.

7. Duplicated declarations of some types may exist in different package

specifications.

8. In some circumstances, constructors may not be converted to an Ada function

with a classwide type return value.
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9. In some cases, Adabindgen may convert a C++ class as an Ada tagged type

derived from its grandparent class instead of its parent class.

10. Currently, all protected and private data attributes and member functions of a

C++ class are converted into public data attributes and subprograms of an Ada

package. All visibilities of a C++ class's data attributes and member functions

are distorted.
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Appendix G. The Converted ObjectSim and RDT Header Files

This appendix lists all Ada package specifications created by this thesis work to

interface the existing ObjectSim, ObjectManager, and RDT classes. Table G-1 lists the

ObjectManager header files used by RDT and the created Ada package specifications. The

ObjectSim header files and the created Ada package specifications to interface ObjectSim

classes are listed in Table G-2. The original RDT header files and the created Ada package

specifications to interface the RDT classes are listed in Table G-3.

Table G- 1. The created Ada interface package specifications of some ObjectManager header files

C++ Header File Name Ada Package Specification Name
DIS v2 RDT entity obj mgr.h dis v2 rdt entityobj mgr h.ads
simulation clock.h simulation clock h.ads
sim time.h sim time h.ads
dsi user.h dsi user h.ads
DIS v2 entity obj mgr.h dis v2 entity objmgr h.ads

133



Table G- 2. The created Ada interface package specifications of ObjectSun header fles

C++ Header File Name Ada Package Specification Name Used by Used by
_____________________________________________ RDT testsim

Fastrak.h fastrak h.ads y
GraphFont.h graphfont h.ads Y
GraphText.h gaphtext h.ads Y ______

animation effect player.h animation effect player h.ads N
attachable player.h attachableplayer h.ads V V
base net player.h base netplayer h.ads V _____

bldg player.h bldg player h.ads N
colors.h colors h.ads N
constants.h constants h.ads V Y
cp colors.h cp colors h.ads N
crip pohl.h crip pohl h.ads N
dartview.h dartview h.ads N
event.h event h.ads V
fit model.h fit model h.ads V V
labfont.h labfont h.ads V _____

model mgr.h model nigr h.ads V
modifier.h modifier h.ads N V
mouse mod.h mouse mod h.ads N ______

multiview.h multiview h.ads N ______

ng keypad modifier.h ng keypad modifier h.ads N
nq modifier.h nq modifier h.ads N ______

ng spaceball sgi mod.h nc~spaceball sgi mod h.ads N ______

pfinr renderer.h pfinr renderer h.ads V ______

player.h player h.ads Y
polhemus mod.h polhemus mod h.ads N
round earth utils.h round earth utils h.ads N Y
sim entity gr.h sim entity mgr h.ads N
simple terrain.h simple terrain h.ads V
simulation.h simulation h.ads V V
spaceball mod.h spaceball mod h.ads N
spaceball sgi mod.h spaceball sgi mod h.ads V
terrain.h terrain h.ads V V
vc net manager.h vc net manager h.ads N
vc net~player.h vc net player h.ads N
view.h view h.ads V Y

Y: Yes. N: No.

134



Table G- 3. The created Ada interface package specifications of RDT header files

C++ Header File Name. Ada Package Specification Name
StringClass.h stringclass h.ads
errsg.h errmsg hads
flyer.h flyer hKads
hud.h bud hKads
hudtypes.h hudtypes h.ads
instruments.h instruments hKads
rdtApplication.h rdtapplication hKads
rdtCentroidlh rdtcentroid hKads
rdtCirQueue.h rdtcirgueue hKads
rdtColorfunctions.h rdtcolorfunctions hKads
rdtConfigurelh rdtconfigure h.ads
rdtControllernh rdtcontroller hKads
rdtDefines.h rdtdeftnes hKads
rdtErrorMessages.h rdterrormnessages hKads
rdtEvent.h rdtevent hKads
rdtEventManager.h rdteventmnanager hKads
rdtEventQueue.h rdteventgueue hKads
rdtGeoRefMgr.h rdtgeorefmngr hads
rdtGlobals.h rdtglobals h.ads
rdtHelp.h rdthelp h.ads
rdtNetManagernh rdtnetmanager h.ads
rdtPlayer.h rdtplayer h.ads
rdtREU.h rdtreu h.ads
rdtSetRLE.h rdtsetrle h.ads
rdtStrfnct.h rdtstrfnct hKads
rdtTypes.h rdttypes h.ads
rdtUserlnterface.h rdtuserinterface h.ads
rdtUtilities.h rdtutilities h.ads
sim models.h sim models h.ads
wgs84.h wgs84_ h.ads
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Appendix H. The Source-code Modules of RDT

RDT C++ Source-code Converted Ada Package
Modules File Name Body File Name*
CentroidPlayer.cc _________________

CockpitPlayer.cc
PipeClass.cc___________________

Plan ViewPlayer.cc:
StringClass.cc__________________

TetherPlayer.cc
hud.cc
instruments.cc
rdtApp.cc
rdtAppl cation.cc rdtMain.adb
rdtCentroid.cc
rdtCirQueue.cc rdtcirgueue h.adb
rdtColorFunctions.cc
rdtConfigure.cc
rdtController.cc
rdtErrorMessages.cc
rdtEventManager.cc rdteventmnanager h.adb
rdtEventQueue.cc
rdtGeoRefMgr.cc _________________

rdtHelp.cc
rdtNetManager.cc ___________________
rdtREU.cc
rdtSetRLE.cc
rdtTerrain.cc
rdtUserlnterface.cc
rdtUtilities.cc
rdtView.cc
rdtViewPlayer.cc
wgs84.cc

*Blank indicates no converted Ada package body.
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Appendix I. An Example to Interface an Ada Tagged Type from C++

This appendix shows an example of how to use GNAT's C++ low-level interface

capabilities to interface an Ada tagged type from C++ programs. Figure I-1 shows the

package specification of an interfaced Ada tagged type, called C 1 a s sA. In order to let

the C++ program interface it, C 1 a s s A must add an attribute, called vt r as a component.

Then, the Clas s_A's member function, a_fun_1, must be exported as a C link symbol

so that other C++ modules can interface it. The package body of C1a s s A is shown in

Figure 1-2.

In order to derive a C++ class, called ClassAA, from the Ada tagged type,

Cl a s sA, all data attributes and member functions of C 1 a s sA must be declared within

the declaration of C 1 a s sAA, like the declaration shown in Figure 1-3. In the declaration

of ClassAA, one data attribute and one member function, aa val and aa_func_2,

are added into the declaration of Class_AA. The data attribute, aval, and the member

function, aa_func_1 are declared in order to interface the original Ada tagged type,

C 1 a s sA. Programmers must make sure that all data attributes and member functions of

the parent Ada tagged type are declared in the same sequence as they are declared in the

Ada tagged type declaration. Then, new data attributes and member function declarations

should follow. For instance, in this example, a_val must be declared before aaval,

because aval is a data attribute of the original Ada tagged type. For the same reason, the

member function aa func_1 must be declared before aa func_2.

To implement the member functions of Cl a s sAA, the exported original member

function of the interfaced Ada tagged type must be specified as a C link symbol. In Figure

137



1-4, the external declaration section specifies a fun_1 as a C link symbol. Then,

a fun_1 is wrapped in aa func_1. In this way, the original member function

a fun_1 is indirectly executed.

Figure 1-5 is a C++ main program to show that correct interface results are achieved.

In the C++ main program, two extra functions must be called. Adainit must be called

before any declaration and execution statements and adafinal must be called after all

execution statements. Adainit is called to elaborate the Ada library units and

adaf inal is called to perform the finalization that normally takes place after return from

an Ada main subprogram [Cohen96].

with Interfaces.CPP;
use Interfaces.CPP;

package classA h is

type ClassA is tagged
record

a_val: Integer:= 120;
vptr : Interfaces.CPP.VtablePtr,

end record;

pragma CPP Class (Entity => ClassA);
pragma CPPVtable (Entity => Class-A, Vtable_Ptr > vptr, Entry-Count => 1);
function aifun1 (This: ClassA'Class) return Integer;
pragma Export (C, a-fun 1, "a fun1", "a-fun I");

end class A h;

Figure 1- 1. The package specification of an interfaced Ada tagged type, named Class_A
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with Ada.Text 10, Ada.IntegerjText 10;
use Ada.Text 10, ada.Integer Text-IG;

package body class-A-h is

function a-fun 1 (This : ClassA'Class) return Integer is
begin

putLLine("This is a-fun_1");
put("a-val =It)
Put(This.a-val);
putiine(" I)T
return This.a-val;

end a-funP;
end class A h;

Figure 1- 2. The package body of ClassA

class ClassAA

I
public:

int a Val;
mnt aa-val;
int aa-funcl1(void);
int aa-func-2(void);

ClassAAO;

Figure 1- 3. The declaration of ClassAA

#include "classAA.h"
extern "C" I
int a-fun_1(void);

int ClassAA::aa-func1 1(void)
return a-fun 10);

int ClassAA::aa-func 2(void)
return aa-val;

ClassAA::Class AAo I
a-val =120;
aa-val=222;

Figure 1- 4. The implementation of ClassAA
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CppMain: CppMain.cc class-a h.o b-class-a-h.o classAA.o
CC CppMain.cc -o CppMain class-a-h.o b-class-a-h.o class-AA.o\

-Ignat -L/usr/ local/ib/ gcc-lib/ mips-sgi-iix5.3/ 2.7.2 -lgcc

class-a-h.o: class-a-h.adb class-a-h.ads
gcc -c class-a-h.adb

b-class-a-h.o: class-a-h.o b class-a-b.c
gnatbind -g -n class-a-h.ali
gcc -c b-class-a-h.c

classAA.o: classAA.h classAA.cc
CC -c -g class-AA.cc

clean:
rm *.o

Figure 1- 5. The Makefile to build this example
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Appendix J. The Conversion of a C++ Function

This appendix presents the rules to convert C++ functions into Ada subprograms.

C++ programs consist of pieces called classes and functions [Deitel94]. A C++ class can

be converted into an Ada tagged type and a C++ function should be converted into an Ada

procedure or function based on the following rules:

1. A C++ function without any return value should be converted into an Ada procedure.

2. A C++ function with a return value should be converted into an Ada function.

For example, a C++ function has the following profile:

void functionl (int pl);

Then it should be converted into an Ada procedure as follows:

procedure functionl (pl : Integer);

Also, a C++ function has the following profile:

int function2 (int pl);

Then it should be converted into an Ada function as follows:

function function2 (pl : integer ) return Integer;

However, there is one exception. If a C++ member function modifies the class data

attributes and has a return value, it is mandatory to change it into a C++ class member

function without the return value. Then this changed C++ member function should be

converted into an Ada procedure. Consider the C++ class and its member function shown

in Figure J- 1. According to the first rule, Add I tem member function should be converted
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into an Ada procedure. Because the AddItem procedure modifies Count, which is a data

attribute of the class, the parameter mode of T his should be declared as in out mode, like

the Add I t em procedure shown in Figure J-2. For the same reason, the Thi s parameter in

Delete I tem also needs to be declared as in out mode. According to the second rule, the

C++ DeleteItem function should be converted into an Ada function, because it has a

return value, like the Ada DeleteItem function shown in Figure J-2. However, in Ada

programs, a function which has a out mode parameter is illegal.

Class IntegerQueue
{
public:

void Addltem(int Item);
int Deleteltemo; //Delete the first item in the queue and return the value

private:
int Count=O; //Count how many items are in the queue

I;

IntegerQueue::Addltem( int Item)
{

Count = Count +1;
I

int IntegerQueue::Deleteltem()
{

Count = Count -1;
I

Figure J- 1. A C++ class which has a member function with a return value
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pacjkage IntegerQueue h is

type IntegerQueue is tagged
record

Count: Integer := 0; --//Count how many items are in the queue
end record;

procedure AddItern (This : in out IntegerQueue, Item: Integer);

function DeleteItem (This : in out IntegerQueue) return Integer;

end IntegerQueue-h;

package body IntegerQueue-h is

procedure AddItem( This : in out IntegerQueue, Item : Integer) is
begin

This.Count:= This.Count +1;

end AddItem;

function DeleteItem( This : in out IntegerQueue) return Integer is
begin

This.Count:= This.Count - 1;
return XXX;

end DeleteItem;

end IntegerQueue-h;

Figure J- 2. An example showing that a C++ class member function cannot be directly converted into an Ada function

To overcome this defect, it is recommended that a C++ member function, which has

a return value and also modifies any data attributes of the class, should be changed into a

C++ member function without any return value. Then the changed C++ member function

should be converted into an Ada procedure according to the first rule. It is simple to change

a C++ class member function, which has a return value, into a C++ member function
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without a return value. For example, the Deletelem function shown in Figure J-1, can

be changed into a function which looks like the following function profile:

void DeleteItem( int &Result);

where Result is the return value of DeleteItem. Using this method can reduce ripple

effects. After that, the Delete Item function can be converted into an Ada procedure as

follows:

procedure DeleteItem ( This in out IntegerQueue,

Result : access Integer);

(Note: Simply changing the profile of De let e I tem into

void DeleteItem( int Result);

will not achieve the same result, because pass-by-value is used in C++ for passing function

parameters. "Under pass-by-value, the function never accesses the actual arguments of the

call. The values the function manipulates are its own local copies" [Lippman91]. )

However, this solution has one disadvantage. The original C++ member function

profile can directly return the result, but the converted Ada subprogram must access the

return result in an indirect way, because the return value type becomes an access type. This

loss should be recovered in the last phase of this methodology.

The recovering method is to first change the Re sult type of the Ada procedure

from an access type into the original type. Then, some necessary changes in the Ada

procedure body must be done, because the calling interface has been changed. Finally, all

statements calling the Ada procedure should be changed to meet the new calling interface.
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For example, the De l e t I tem procedure should be changed into an Ada procedure whose

profile should look like this:

procedure DeleteItem ( This : in out IntegerQueue,

Result : in out Integer);

Then, the second step is to change the body of the DeleteItem procedure. Finally, all

statements calling the DeleteItem must do the necessary changes to fit the new

procedure profile.

In this thesis work, only two RDT class member functions, EventQueue::

iterateBackward and CircleQueue: :iterateBackward, must be changed

into member functions which have no return values. The new member function profiles are

listed in Table J-1.

Table J- 1. The original and new function profiles of CircleQueue::iterateBackward and EventQueue::iterateBackard

Original function profile New function profile
int CircleQueue::iterateBackward(void) void CircleQueue::iterbackward(int &Result)
int EventQueue::iterateBackward(void) void EventQueue::iterbackward(int &Result)
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